Stream Members Only: Data-driven Characterization of Stellar Streams with Mixture Density Networks

Nathaniel Starkman, Jacob Nibauer, Jo Bovy, Jeremy J. Webb, Kiyan Tavangar, Adrian Price-Whelan and Ana Bonaca
{"title":"Stream Members Only: Data-driven Characterization of Stellar Streams with Mixture Density Networks","authors":"Nathaniel Starkman, Jacob Nibauer, Jo Bovy, Jeremy J. Webb, Kiyan Tavangar, Adrian Price-Whelan and Ana Bonaca","doi":"10.3847/1538-4357/ad94f2","DOIUrl":null,"url":null,"abstract":"Stellar streams are sensitive probes of the Milky Way’s gravitational potential. The mean track of a stream constrains global properties of the potential, while its fine-grained surface density constrains galactic substructure. A precise characterization of streams from potentially noisy data marks a crucial step in inferring galactic structure, including the dark matter, across orders of magnitude in mass scales. Here we present a new method for constructing a smooth probability density model of stellar streams using all of the available astrometric and photometric data. To characterize a stream’s morphology and kinematics, we utilize mixture density networks to represent its on-sky track, width, stellar number density, and kinematic distribution. We model the photometry for each stream as a single-stellar population, with a distance track that is simultaneously estimated from the stream’s inferred distance modulus (using photometry) and parallax distribution (using astrometry). We use normalizing flows to characterize the distribution of background stars. We apply the method to the stream GD-1, and the tidal tails of Palomar 5. For both streams we obtain a catalog of stellar membership probabilities that are made publicly available. Importantly, our model is capable of handling data with incomplete phase-space observations, making our method applicable to the growing census of Milky Way stellar streams.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad94f2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stellar streams are sensitive probes of the Milky Way’s gravitational potential. The mean track of a stream constrains global properties of the potential, while its fine-grained surface density constrains galactic substructure. A precise characterization of streams from potentially noisy data marks a crucial step in inferring galactic structure, including the dark matter, across orders of magnitude in mass scales. Here we present a new method for constructing a smooth probability density model of stellar streams using all of the available astrometric and photometric data. To characterize a stream’s morphology and kinematics, we utilize mixture density networks to represent its on-sky track, width, stellar number density, and kinematic distribution. We model the photometry for each stream as a single-stellar population, with a distance track that is simultaneously estimated from the stream’s inferred distance modulus (using photometry) and parallax distribution (using astrometry). We use normalizing flows to characterize the distribution of background stars. We apply the method to the stream GD-1, and the tidal tails of Palomar 5. For both streams we obtain a catalog of stellar membership probabilities that are made publicly available. Importantly, our model is capable of handling data with incomplete phase-space observations, making our method applicable to the growing census of Milky Way stellar streams.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信