Expression of endochitinase and exochitinase in lettuce chloroplasts increases plant biomass and kills fungal pathogen Candida albicans

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Iqra Fatima, Geetanjali Wakade, Niaz Ahmad, Henry Daniell
{"title":"Expression of endochitinase and exochitinase in lettuce chloroplasts increases plant biomass and kills fungal pathogen Candida albicans","authors":"Iqra Fatima, Geetanjali Wakade, Niaz Ahmad, Henry Daniell","doi":"10.1111/pbi.14596","DOIUrl":null,"url":null,"abstract":"SummaryLettuce (<jats:italic>Lactuca sativa</jats:italic>) is a popular leafy vegetable with global production of ~28 million Mt, cultivated &gt;1 million hectares, with a market value of US$ 4 billion in 2022. However, lettuce is highly susceptible to fungal pathogens that drastically reduce biomass and quality due to spoilage/rot. Therefore, in this study, we investigated the expression of chitinase genes via the lettuce chloroplast genome to enhance biomass and disease resistance. Site‐specific integration of the expression cassette into chloroplast genomes was confirmed using two sets of PCR primers. Homoplasmy in transplastomic lines was confirmed in Southern blots by the absence of untransformed genomes. Maternal inheritance of transgenes was confirmed by the lack of segregation when seedlings were germinated in the selection medium. Chitinases expressed in chloroplasts are active in a broad range of pH (5–9) and temperatures (20–50 °C). Exochitinase expression significantly increased the number of leaves, root or shoot length and biomass throughout the growth cycle. Endochitinase expression reduced root/shoot biomass at early stages but recovered in older plants. Plant extracts expressing endochitinase/exochitinase showed activities as high as purified commercial enzymes. Antifungal activity in <jats:italic>Candida albicans</jats:italic> cultures inhibited growth up to 87%. A novel Carbotrace 680™ Optotracer binding to the ß‐1,4 linkages of chitin, evaluated for the first time in plant systems, is highly sensitive to measure chitinase activity. To the best of our knowledge, this is the first report of chitinase expression via the chloroplast genomes of an edible plant, to confer desired agronomic traits or for biomedical applications.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"80 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14596","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryLettuce (Lactuca sativa) is a popular leafy vegetable with global production of ~28 million Mt, cultivated >1 million hectares, with a market value of US$ 4 billion in 2022. However, lettuce is highly susceptible to fungal pathogens that drastically reduce biomass and quality due to spoilage/rot. Therefore, in this study, we investigated the expression of chitinase genes via the lettuce chloroplast genome to enhance biomass and disease resistance. Site‐specific integration of the expression cassette into chloroplast genomes was confirmed using two sets of PCR primers. Homoplasmy in transplastomic lines was confirmed in Southern blots by the absence of untransformed genomes. Maternal inheritance of transgenes was confirmed by the lack of segregation when seedlings were germinated in the selection medium. Chitinases expressed in chloroplasts are active in a broad range of pH (5–9) and temperatures (20–50 °C). Exochitinase expression significantly increased the number of leaves, root or shoot length and biomass throughout the growth cycle. Endochitinase expression reduced root/shoot biomass at early stages but recovered in older plants. Plant extracts expressing endochitinase/exochitinase showed activities as high as purified commercial enzymes. Antifungal activity in Candida albicans cultures inhibited growth up to 87%. A novel Carbotrace 680™ Optotracer binding to the ß‐1,4 linkages of chitin, evaluated for the first time in plant systems, is highly sensitive to measure chitinase activity. To the best of our knowledge, this is the first report of chitinase expression via the chloroplast genomes of an edible plant, to confer desired agronomic traits or for biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信