A decision point between transdifferentiation and programmed cell death priming controls KRAS-dependent pancreatic cancer development

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Anne T. Schneider, Christiane Koppe, Emilie Crouchet, Aristeidis Papargyriou, Michael T. Singer, Veronika Büttner, Leonie Keysberg, Marta Szydlowska, Frank Jühling, Julien Moehlin, Min-Chun Chen, Valentina Leone, Sebastian Mueller, Thorsten Neuß, Mirco Castoldi, Marina Lesina, Frank Bergmann, Thilo Hackert, Katja Steiger, Wolfram T. Knoefel, Alex Zaufel, Jakob N. Kather, Irene Esposito, Matthias M. Gaida, Ahmed Ghallab, Jan G. Hengstler, Henrik Einwächter, Kristian Unger, Hana Algül, Nikolaus Gassler, Roland M. Schmid, Roland Rad, Thomas F. Baumert, Maximilian Reichert, Mathias Heikenwalder, Vangelis Kondylis, Mihael Vucur, Tom Luedde
{"title":"A decision point between transdifferentiation and programmed cell death priming controls KRAS-dependent pancreatic cancer development","authors":"Anne T. Schneider, Christiane Koppe, Emilie Crouchet, Aristeidis Papargyriou, Michael T. Singer, Veronika Büttner, Leonie Keysberg, Marta Szydlowska, Frank Jühling, Julien Moehlin, Min-Chun Chen, Valentina Leone, Sebastian Mueller, Thorsten Neuß, Mirco Castoldi, Marina Lesina, Frank Bergmann, Thilo Hackert, Katja Steiger, Wolfram T. Knoefel, Alex Zaufel, Jakob N. Kather, Irene Esposito, Matthias M. Gaida, Ahmed Ghallab, Jan G. Hengstler, Henrik Einwächter, Kristian Unger, Hana Algül, Nikolaus Gassler, Roland M. Schmid, Roland Rad, Thomas F. Baumert, Maximilian Reichert, Mathias Heikenwalder, Vangelis Kondylis, Mihael Vucur, Tom Luedde","doi":"10.1038/s41467-025-56493-7","DOIUrl":null,"url":null,"abstract":"<p>KRAS-dependent acinar-to-ductal metaplasia (ADM) is a fundamental step in the development of pancreatic ductal adenocarcinoma (PDAC), but the involvement of cell death pathways remains unclear. Here, we show that key regulators of programmed cell death (PCD) become upregulated during KRAS-driven ADM, thereby priming transdifferentiated cells to death. Using transgenic mice and primary cell and organoid cultures, we show that transforming growth factor (TGF)-β-activated kinase 1 (TAK1), a kinase regulating cell survival and inflammatory pathways, prevents the elimination of transdifferentiated cells through receptor-interacting protein kinase 1 (RIPK1)-mediated apoptosis and necroptosis, enabling PDAC development. Accordingly, pharmacological inhibition of TAK1 induces PCD in patient-derived PDAC organoids. Importantly, cell death induction via TAK1 inhibition does not appear to elicit an overt injury-associated inflammatory response. Collectively, these findings suggest that TAK1 supports cellular plasticity by suppressing spontaneous PCD activation during ADM, representing a promising pharmacological target for the prevention and treatment of PDAC.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"80 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56493-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

KRAS-dependent acinar-to-ductal metaplasia (ADM) is a fundamental step in the development of pancreatic ductal adenocarcinoma (PDAC), but the involvement of cell death pathways remains unclear. Here, we show that key regulators of programmed cell death (PCD) become upregulated during KRAS-driven ADM, thereby priming transdifferentiated cells to death. Using transgenic mice and primary cell and organoid cultures, we show that transforming growth factor (TGF)-β-activated kinase 1 (TAK1), a kinase regulating cell survival and inflammatory pathways, prevents the elimination of transdifferentiated cells through receptor-interacting protein kinase 1 (RIPK1)-mediated apoptosis and necroptosis, enabling PDAC development. Accordingly, pharmacological inhibition of TAK1 induces PCD in patient-derived PDAC organoids. Importantly, cell death induction via TAK1 inhibition does not appear to elicit an overt injury-associated inflammatory response. Collectively, these findings suggest that TAK1 supports cellular plasticity by suppressing spontaneous PCD activation during ADM, representing a promising pharmacological target for the prevention and treatment of PDAC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信