Yaoming Zhuang, Jiaming Liu, Haoyang Zhao, Longyu Ma, Zirui Fang, Li Li, Chengdong Wu, Wei Cui, Zhanlin Liu
{"title":"A deep learning framework based on structured space model for detecting small objects in complex underwater environments.","authors":"Yaoming Zhuang, Jiaming Liu, Haoyang Zhao, Longyu Ma, Zirui Fang, Li Li, Chengdong Wu, Wei Cui, Zhanlin Liu","doi":"10.1038/s44172-025-00367-9","DOIUrl":null,"url":null,"abstract":"<p><p>Regular monitoring of marine life is essential for preserving the stability of marine ecosystems. However, underwater target detection presents several challenges, particularly in balancing accuracy with model efficiency and real-time performance. To address these issues, we propose an innovative approach that combines the Structured Space Model (SSM) with feature enhancement, specifically designed for small target detection in underwater environments. We developed a high-accuracy, lightweight detection model-UWNet. The results demonstrate that UWNet excels in detection accuracy, particularly in identifying difficult-to-detect organisms like starfish and scallops. Compared to other models, UWNet reduces the number of model parameters by 5% to 390%, substantially improving computational efficiency while maintaining top detection accuracy. Its lightweight design enhances the model's applicability for deployment on underwater robots.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00367-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Regular monitoring of marine life is essential for preserving the stability of marine ecosystems. However, underwater target detection presents several challenges, particularly in balancing accuracy with model efficiency and real-time performance. To address these issues, we propose an innovative approach that combines the Structured Space Model (SSM) with feature enhancement, specifically designed for small target detection in underwater environments. We developed a high-accuracy, lightweight detection model-UWNet. The results demonstrate that UWNet excels in detection accuracy, particularly in identifying difficult-to-detect organisms like starfish and scallops. Compared to other models, UWNet reduces the number of model parameters by 5% to 390%, substantially improving computational efficiency while maintaining top detection accuracy. Its lightweight design enhances the model's applicability for deployment on underwater robots.