Patient-derived tumor explant models of tumor immune microenvironment reveal distinct and reproducible immunotherapy responses.

IF 6.5 2区 医学 Q1 IMMUNOLOGY
Oncoimmunology Pub Date : 2025-12-01 Epub Date: 2025-02-17 DOI:10.1080/2162402X.2025.2466305
Rita Turpin, Karita Peltonen, Jenna H Rannikko, Ruixian Liu, Anita N Kumari, Daniel Nicorici, Moon Hee Lee, Minna Mutka, Panu E Kovanen, Laura Niinikoski, Tuomo Meretoja, Johanna Mattson, Petrus Järvinen, Kanerva Lahdensuo, Riikka Järvinen, Sara Tornberg, Tuomas Mirtti, Pia Boström, Ilkka Koskivuo, Anil Thotakura, Jeroen Pouwels, Maija Hollmén, Satu Mustjoki, Juha Klefström
{"title":"Patient-derived tumor explant models of tumor immune microenvironment reveal distinct and reproducible immunotherapy responses.","authors":"Rita Turpin, Karita Peltonen, Jenna H Rannikko, Ruixian Liu, Anita N Kumari, Daniel Nicorici, Moon Hee Lee, Minna Mutka, Panu E Kovanen, Laura Niinikoski, Tuomo Meretoja, Johanna Mattson, Petrus Järvinen, Kanerva Lahdensuo, Riikka Järvinen, Sara Tornberg, Tuomas Mirtti, Pia Boström, Ilkka Koskivuo, Anil Thotakura, Jeroen Pouwels, Maija Hollmén, Satu Mustjoki, Juha Klefström","doi":"10.1080/2162402X.2025.2466305","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-resident immune cells play a crucial role in eliciting anti-tumor immunity and immunomodulatory drug responses, yet these functions have been difficult to study without tractable models of the tumor immune microenvironment (TIME). Patient-derived <i>ex vivo</i> models contain authentic resident immune cells and therefore, could provide new mechanistic insights into how the TIME responds to tumor or immune cell-directed therapies. Here, we assessed the reproducibility and robustness of immunomodulatory drug responses across two different <i>ex vivo</i> models of breast cancer TIME and one of renal cell carcinoma. These independently developed TIME models were treated with a panel of clinically relevant immunomodulators, revealing remarkably similar changes in gene expression and cytokine profiles among the three models in response to T cell activation and STING-agonism, while still preserving individual patient-specific response patterns. Moreover, we found two common core signatures of adaptive or innate immune responses present across all three models and both types of cancer, potentially serving as benchmarks for drug-induced immune activation in <i>ex vivo</i> models of the TIME. The robust reproducibility of immunomodulatory drug responses observed across diverse <i>ex vivo</i> models of the TIME underscores the significance of human patient-derived models in elucidating the complexities of anti-tumor immunity and therapeutic interventions.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2466305"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2025.2466305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-resident immune cells play a crucial role in eliciting anti-tumor immunity and immunomodulatory drug responses, yet these functions have been difficult to study without tractable models of the tumor immune microenvironment (TIME). Patient-derived ex vivo models contain authentic resident immune cells and therefore, could provide new mechanistic insights into how the TIME responds to tumor or immune cell-directed therapies. Here, we assessed the reproducibility and robustness of immunomodulatory drug responses across two different ex vivo models of breast cancer TIME and one of renal cell carcinoma. These independently developed TIME models were treated with a panel of clinically relevant immunomodulators, revealing remarkably similar changes in gene expression and cytokine profiles among the three models in response to T cell activation and STING-agonism, while still preserving individual patient-specific response patterns. Moreover, we found two common core signatures of adaptive or innate immune responses present across all three models and both types of cancer, potentially serving as benchmarks for drug-induced immune activation in ex vivo models of the TIME. The robust reproducibility of immunomodulatory drug responses observed across diverse ex vivo models of the TIME underscores the significance of human patient-derived models in elucidating the complexities of anti-tumor immunity and therapeutic interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncoimmunology
Oncoimmunology ONCOLOGYIMMUNOLOGY-IMMUNOLOGY
CiteScore
12.50
自引率
2.80%
发文量
276
审稿时长
24 weeks
期刊介绍: OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy. As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology. The journal covers a wide range of topics, including: -Basic and translational studies in immunology of both solid and hematological malignancies -Inflammation, innate and acquired immune responses against cancer -Mechanisms of cancer immunoediting and immune evasion -Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells -Immunological effects of conventional anticancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信