{"title":"[Seasonal Pollution Characteristics and Source Apportionment of Atmospheric VOCs in Central Urban Area of Chongqing].","authors":"Jia Yao, Zhen-Liang Li, Mu-Lan Chen, Ling Li, Qin Xu, Wei-Kai Fang, Chao Peng, Chong-Zhi Zhai, Feng-Wen Wang, Pei-Li Lu","doi":"10.13227/j.hjkx.202402041","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term seasonal pollution characteristics, environmental effects, and sources of atmospheric volatile organic compounds (VOCs) were investigated based on the one-year (06/2021-05/2022) online observation data of VOCs in the central urban area of Chongqing. The results showed that during the observation period, the mean value of <i>φ</i>(VOCs) was 31.5×10<sup>-9</sup>, of which alkane accounted for the highest proportion (39.6%), followed by oxygenated VOCs (OVOCs) (15.6%), halogenated hydrocarbons (13.9%), aromatic hydrocarbons (11.6%), olefin (10.5%), and alkyne (8.3%). In terms of time, the volume fraction changed to winter (35.7×10<sup>-9</sup>) > autumn (32.5×10<sup>-9</sup>) > summer (31.3×10<sup>-9</sup>) > spring (27.6×10<sup>-9</sup>). In summer, the highest contribution of aromatic hydrocarbons to ozone generation was observed in 1,2,4-tritylene, toluene, and <i>m</i>/<i>p</i>-xylene species with higher ozone generation potential (OFP). In winter, the contribution of aromatic hydrocarbons to the formation potential of secondary organic aerosols (SOA) was as high as 96%, and toluene and <i>m</i>/<i>p</i>-xylene were the main contributing species to the formation potential of SOA. The main sources of VOCs in summer were motor vehicle emissions (30.9%), industrial emissions (21.2%), and solvent use sources (18.6%), and the main sources in winter were motor vehicle exhaust (35.8%), combustion sources (30.9%), and industrial sources (20.6%). The contribution of combustion sources to VOCs in winter (30.9%) was significantly higher than that in summer (17.4%).</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 2","pages":"764-773"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202402041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The long-term seasonal pollution characteristics, environmental effects, and sources of atmospheric volatile organic compounds (VOCs) were investigated based on the one-year (06/2021-05/2022) online observation data of VOCs in the central urban area of Chongqing. The results showed that during the observation period, the mean value of φ(VOCs) was 31.5×10-9, of which alkane accounted for the highest proportion (39.6%), followed by oxygenated VOCs (OVOCs) (15.6%), halogenated hydrocarbons (13.9%), aromatic hydrocarbons (11.6%), olefin (10.5%), and alkyne (8.3%). In terms of time, the volume fraction changed to winter (35.7×10-9) > autumn (32.5×10-9) > summer (31.3×10-9) > spring (27.6×10-9). In summer, the highest contribution of aromatic hydrocarbons to ozone generation was observed in 1,2,4-tritylene, toluene, and m/p-xylene species with higher ozone generation potential (OFP). In winter, the contribution of aromatic hydrocarbons to the formation potential of secondary organic aerosols (SOA) was as high as 96%, and toluene and m/p-xylene were the main contributing species to the formation potential of SOA. The main sources of VOCs in summer were motor vehicle emissions (30.9%), industrial emissions (21.2%), and solvent use sources (18.6%), and the main sources in winter were motor vehicle exhaust (35.8%), combustion sources (30.9%), and industrial sources (20.6%). The contribution of combustion sources to VOCs in winter (30.9%) was significantly higher than that in summer (17.4%).