Junzhou Liu, Uri Hochberg, Asaf Alon, Shabtai Cohen
{"title":"Trade-offs between residual conductance, hydraulic capacitance and water access in Mediterranean species.","authors":"Junzhou Liu, Uri Hochberg, Asaf Alon, Shabtai Cohen","doi":"10.1093/treephys/tpaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Dry season droughts may increasingly threaten Mediterranean forests under climate change. While plants employ three desiccation avoidance strategies to avoid or delay dehydration damage, including reduced water loss, enhanced tissue water storage, and improved root water access, resource allocation competition may lead to trade-offs among these strategies that are not yet fully understood. We investigated six Mediterranean woody species by analysing: (1) twig hydraulic capacitance (0.32 - 2.81 mmol m-2 MPa-1) representing tissue water storage capacity; (2) twig residual conductance (gres) at 25 °C (1.23 - 7.73 mmol m-2 s-1) reflecting water loss rate; and predawn water potential (ΨPD) and its difference from midday water potential (∆Ψ) at the end of the dry season as root water access indicators. Significant trade-offs in plant desiccation avoidance strategies were observed as gres positively correlated with ∆Ψ (R2 = 0.78, P = 0.02) and twig hydraulic capacitance negatively correlated with ΨPD (R2 = 0.68, P = 0.04). Consequently, species with greater root water access exhibited lower tissue water storage capacity and higher gres, potentially increasing mortality risk when soil moisture becames limiting. By inverting a plant desiccation model, we also demonstrated that minimum survival-required hydraulic capacitance and a novel risk index were both positively correlated with ΨPD, consistent with historical mortality records. Additionally, despite temperature-dependent gres patterns which revealed species-specific responses, elevated temperatures amplified the risk index for all species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf023","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Dry season droughts may increasingly threaten Mediterranean forests under climate change. While plants employ three desiccation avoidance strategies to avoid or delay dehydration damage, including reduced water loss, enhanced tissue water storage, and improved root water access, resource allocation competition may lead to trade-offs among these strategies that are not yet fully understood. We investigated six Mediterranean woody species by analysing: (1) twig hydraulic capacitance (0.32 - 2.81 mmol m-2 MPa-1) representing tissue water storage capacity; (2) twig residual conductance (gres) at 25 °C (1.23 - 7.73 mmol m-2 s-1) reflecting water loss rate; and predawn water potential (ΨPD) and its difference from midday water potential (∆Ψ) at the end of the dry season as root water access indicators. Significant trade-offs in plant desiccation avoidance strategies were observed as gres positively correlated with ∆Ψ (R2 = 0.78, P = 0.02) and twig hydraulic capacitance negatively correlated with ΨPD (R2 = 0.68, P = 0.04). Consequently, species with greater root water access exhibited lower tissue water storage capacity and higher gres, potentially increasing mortality risk when soil moisture becames limiting. By inverting a plant desiccation model, we also demonstrated that minimum survival-required hydraulic capacitance and a novel risk index were both positively correlated with ΨPD, consistent with historical mortality records. Additionally, despite temperature-dependent gres patterns which revealed species-specific responses, elevated temperatures amplified the risk index for all species.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.