[Influences of Acidification on the Allocation and Availability of Lead and Cadmium within Soil Aggregates].

Q2 Environmental Science
Shu-Ting Tang, Sheng-Bai Xiao, Hao Cui, Shi-Qiang Wei
{"title":"[Influences of Acidification on the Allocation and Availability of Lead and Cadmium within Soil Aggregates].","authors":"Shu-Ting Tang, Sheng-Bai Xiao, Hao Cui, Shi-Qiang Wei","doi":"10.13227/j.hjkx.202401288","DOIUrl":null,"url":null,"abstract":"<p><p>Soil aggregates, the fundamental units of soil structure, crucially regulate soil physicochemical properties. Acidification alters soil aggregation, impacting heavy metal distribution and availability within aggregates. This study explores aggregate composition in differently acidified yellow and purple soils, along with the variation in the distribution and availability of cadmium (Cd) and lead (Pb) in different-sized aggregates. Acidification reduced the mass fraction of large aggregates (&gt;2 mm), with non-acidified soil being 5%-15% higher. In both soils, large aggregates contributed most to the total amount of Cd and Pb (contribution factors 0.31-0.47). Yellow soil showed the highest Cd and Pb contents in small (1-0.25 mm) and micro-aggregates (&lt;0.25 mm), while the highest contents were observed in large aggregates in acidified purple soil. The mass fractions determined the distribution of external Pb and Cd in aggregates when entered into soils. In highly acidified soil, smaller aggregates posed a higher heavy metal release risk, while in non-acidified soil, the large aggregates showed higher Cd and Pb contents and thus a higher release risk. The alterations in the transformation and availability of Cd and Pb were attributed to the variations in soil aggregate composition and their properties driven by acidification, including mineral weathering, iron oxide leaching, organic matter loss, etc. These results provide the basis for the co-remediation of soil acidification and heavy metal pollution.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 2","pages":"1107-1117"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202401288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Soil aggregates, the fundamental units of soil structure, crucially regulate soil physicochemical properties. Acidification alters soil aggregation, impacting heavy metal distribution and availability within aggregates. This study explores aggregate composition in differently acidified yellow and purple soils, along with the variation in the distribution and availability of cadmium (Cd) and lead (Pb) in different-sized aggregates. Acidification reduced the mass fraction of large aggregates (>2 mm), with non-acidified soil being 5%-15% higher. In both soils, large aggregates contributed most to the total amount of Cd and Pb (contribution factors 0.31-0.47). Yellow soil showed the highest Cd and Pb contents in small (1-0.25 mm) and micro-aggregates (<0.25 mm), while the highest contents were observed in large aggregates in acidified purple soil. The mass fractions determined the distribution of external Pb and Cd in aggregates when entered into soils. In highly acidified soil, smaller aggregates posed a higher heavy metal release risk, while in non-acidified soil, the large aggregates showed higher Cd and Pb contents and thus a higher release risk. The alterations in the transformation and availability of Cd and Pb were attributed to the variations in soil aggregate composition and their properties driven by acidification, including mineral weathering, iron oxide leaching, organic matter loss, etc. These results provide the basis for the co-remediation of soil acidification and heavy metal pollution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信