A hybrid optimization-enhanced 1D-ResCNN framework for epileptic spike detection in scalp EEG signals.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Priyaranjan Kumar, Prabhat Kumar Upadhyay
{"title":"A hybrid optimization-enhanced 1D-ResCNN framework for epileptic spike detection in scalp EEG signals.","authors":"Priyaranjan Kumar, Prabhat Kumar Upadhyay","doi":"10.1038/s41598-025-90164-3","DOIUrl":null,"url":null,"abstract":"<p><p>In order to detect epileptic spikes, this paper suggests a deep learning architecture that blends 1D residual convolutional neural networks (1D-ResCNN) with a hybrid optimization strategy. The Layer-wise Adaptive Moments (LAMB) and AdamW algorithms have been used in the model's optimization to improve efficiency and accelerate convergence while extracting features from time and frequency domain EEG data. The framework has been considered on two public epilepsy datasets CHB-MIT and Siena. In the CHB-MIT dataset, comprising 24-channel EEG recordings from 12 patients, the model achieved an accuracy of 99.71%, a sensitivity of 99.60%, and a specificity of 99.61% for detecting epileptic spikes. Similarly, in the Siena dataset, which includes EEG data from 14 adult patients, the model demonstrated an average accuracy of 99.75%. Sensitivity averaged 99.94%, while specificity averaged 99.95%. The false positive rate (FPR) remained low at 0.0011, and the model obtained an average F1-score of 99.74%. For real-time hardware validation, the 1D-ResCNN model was deployed within the Typhoon HIL simulator, utilizing embedded C2000 microcontrollers. This hardware configuration allowed for immediate spike detection with minimal latency, ensuring reliable performance in real-time clinical applications. The findings imply that the suggested approach provides suitable for identifying epileptic spikes in real time for medical settings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5707"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90164-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In order to detect epileptic spikes, this paper suggests a deep learning architecture that blends 1D residual convolutional neural networks (1D-ResCNN) with a hybrid optimization strategy. The Layer-wise Adaptive Moments (LAMB) and AdamW algorithms have been used in the model's optimization to improve efficiency and accelerate convergence while extracting features from time and frequency domain EEG data. The framework has been considered on two public epilepsy datasets CHB-MIT and Siena. In the CHB-MIT dataset, comprising 24-channel EEG recordings from 12 patients, the model achieved an accuracy of 99.71%, a sensitivity of 99.60%, and a specificity of 99.61% for detecting epileptic spikes. Similarly, in the Siena dataset, which includes EEG data from 14 adult patients, the model demonstrated an average accuracy of 99.75%. Sensitivity averaged 99.94%, while specificity averaged 99.95%. The false positive rate (FPR) remained low at 0.0011, and the model obtained an average F1-score of 99.74%. For real-time hardware validation, the 1D-ResCNN model was deployed within the Typhoon HIL simulator, utilizing embedded C2000 microcontrollers. This hardware configuration allowed for immediate spike detection with minimal latency, ensuring reliable performance in real-time clinical applications. The findings imply that the suggested approach provides suitable for identifying epileptic spikes in real time for medical settings.

Abstract Image

Abstract Image

Abstract Image

一种混合优化增强的1D-ResCNN框架用于头皮脑电图信号的癫痫峰检测。
为了检测癫痫峰值,本文提出了一种将1D残差卷积神经网络(1D- rescnn)与混合优化策略相结合的深度学习架构。采用分层自适应矩(Layer-wise Adaptive Moments, LAMB)和AdamW算法对模型进行优化,提高了效率,加快了收敛速度,同时从时频域脑电数据中提取特征。该框架已在两个公共癫痫数据集CHB-MIT和Siena上进行了考虑。在CHB-MIT数据集中,包括来自12名患者的24通道脑电图记录,该模型在检测癫痫峰方面的准确率为99.71%,灵敏度为99.60%,特异性为99.61%。同样,在锡耶纳的数据集中,包括14名成年患者的脑电图数据,该模型的平均准确率为99.75%。灵敏度平均为99.94%,特异性平均为99.95%。假阳性率(FPR)维持在0.0011的低水平,模型平均f1得分为99.74%。为了进行实时硬件验证,利用嵌入式C2000微控制器,在台风HIL模拟器中部署了1D-ResCNN模型。这种硬件配置允许以最小的延迟立即检测尖峰,确保实时临床应用的可靠性能。研究结果表明,所建议的方法适合于在医疗环境中实时识别癫痫峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信