An immunohistochemical approach to cell wall polysaccharide specialization in maritime pine (Pinus pinaster) needles.

IF 2.5 3区 生物学 Q3 CELL BIOLOGY
Santiago Michavila, Antonio Encina, Alfonso G De la Rubia, María Luz Centeno, Penélope García-Angulo
{"title":"An immunohistochemical approach to cell wall polysaccharide specialization in maritime pine (Pinus pinaster) needles.","authors":"Santiago Michavila, Antonio Encina, Alfonso G De la Rubia, María Luz Centeno, Penélope García-Angulo","doi":"10.1007/s00709-025-02041-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pine needles are specialized leaves bearing distinctive anatomical features whose function is to minimize water loss. At the molecular level, needle specialization is expected to lead to heterogeneity in cell wall (CW) composition. By immunohistochemical analysis of CW epitopes in maritime pine (Pinus pinaster) needles, we described the variability of CW composition in all tissues, discussing its possible relationship with the cell function. Cells specialized in water transport, tracheids, transfusion tracheids, and endodermis, together with epi/hypodermal and stomatal cells, had similar CW composition, where epitopes for pectins (homogalacturonan and rhamnogalacturonan-I), xyloglucan, and heteroxylans were abundant. Heteroxylans differ between the dermis, enriched in arabinoxylan, and endodermis, enriched in glucuronoxylan. Xylem CWs were very rich in (arabino)xylans and homogalacturonan and distinctively lacked immunolabelling for rhamnogalacturonan-I. CWs from phloem, transfusion phloem, mesophyll, and resin ducts were enriched in homogalacturonan, rhamnogalacturonan-I, and xyloglucan, showing a low content for heteroxylan epitopes. Arabinogalactan proteins were detected in mesophyll and in cells specialized in solute transport such as phloem, duct sheath, and guard cells. These results show that tissues with similar functions have similar polysaccharide composition, shedding light on the role of CW components through different tissues.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02041-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pine needles are specialized leaves bearing distinctive anatomical features whose function is to minimize water loss. At the molecular level, needle specialization is expected to lead to heterogeneity in cell wall (CW) composition. By immunohistochemical analysis of CW epitopes in maritime pine (Pinus pinaster) needles, we described the variability of CW composition in all tissues, discussing its possible relationship with the cell function. Cells specialized in water transport, tracheids, transfusion tracheids, and endodermis, together with epi/hypodermal and stomatal cells, had similar CW composition, where epitopes for pectins (homogalacturonan and rhamnogalacturonan-I), xyloglucan, and heteroxylans were abundant. Heteroxylans differ between the dermis, enriched in arabinoxylan, and endodermis, enriched in glucuronoxylan. Xylem CWs were very rich in (arabino)xylans and homogalacturonan and distinctively lacked immunolabelling for rhamnogalacturonan-I. CWs from phloem, transfusion phloem, mesophyll, and resin ducts were enriched in homogalacturonan, rhamnogalacturonan-I, and xyloglucan, showing a low content for heteroxylan epitopes. Arabinogalactan proteins were detected in mesophyll and in cells specialized in solute transport such as phloem, duct sheath, and guard cells. These results show that tissues with similar functions have similar polysaccharide composition, shedding light on the role of CW components through different tissues.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信