Short-term exposure to filter-bubble recommendation systems has limited polarization effects: Naturalistic experiments on YouTube.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Naijia Liu, Xinlan Emily Hu, Yasemin Savas, Matthew A Baum, Adam J Berinsky, Allison J B Chaney, Christopher Lucas, Rei Mariman, Justin de Benedictis-Kessner, Andrew M Guess, Dean Knox, Brandon M Stewart
{"title":"Short-term exposure to filter-bubble recommendation systems has limited polarization effects: Naturalistic experiments on YouTube.","authors":"Naijia Liu, Xinlan Emily Hu, Yasemin Savas, Matthew A Baum, Adam J Berinsky, Allison J B Chaney, Christopher Lucas, Rei Mariman, Justin de Benedictis-Kessner, Andrew M Guess, Dean Knox, Brandon M Stewart","doi":"10.1073/pnas.2318127122","DOIUrl":null,"url":null,"abstract":"<p><p>An enormous body of literature argues that recommendation algorithms drive political polarization by creating \"filter bubbles\" and \"rabbit holes.\" Using four experiments with nearly 9,000 participants, we show that manipulating algorithmic recommendations to create these conditions has limited effects on opinions. Our experiments employ a custom-built video platform with a naturalistic, YouTube-like interface presenting real YouTube videos and recommendations. We experimentally manipulate YouTube's actual recommendation algorithm to simulate filter bubbles and rabbit holes by presenting ideologically balanced and slanted choices. Our design allows us to intervene in a feedback loop that has confounded the study of algorithmic polarization-the complex interplay between supply of recommendations and user demand for content-to examine downstream effects on policy attitudes. We use over 130,000 experimentally manipulated recommendations and 31,000 platform interactions to estimate how recommendation algorithms alter users' media consumption decisions and, indirectly, their political attitudes. Our results cast doubt on widely circulating theories of algorithmic polarization by showing that even heavy-handed (although short-term) perturbations of real-world recommendations have limited causal effects on policy attitudes. Given our inability to detect consistent evidence for algorithmic effects, we argue the burden of proof for claims about algorithm-induced polarization has shifted. Our methodology, which captures and modifies the output of real-world recommendation algorithms, offers a path forward for future investigations of black-box artificial intelligence systems. Our findings reveal practical limits to effect sizes that are feasibly detectable in academic experiments.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2318127122"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2318127122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An enormous body of literature argues that recommendation algorithms drive political polarization by creating "filter bubbles" and "rabbit holes." Using four experiments with nearly 9,000 participants, we show that manipulating algorithmic recommendations to create these conditions has limited effects on opinions. Our experiments employ a custom-built video platform with a naturalistic, YouTube-like interface presenting real YouTube videos and recommendations. We experimentally manipulate YouTube's actual recommendation algorithm to simulate filter bubbles and rabbit holes by presenting ideologically balanced and slanted choices. Our design allows us to intervene in a feedback loop that has confounded the study of algorithmic polarization-the complex interplay between supply of recommendations and user demand for content-to examine downstream effects on policy attitudes. We use over 130,000 experimentally manipulated recommendations and 31,000 platform interactions to estimate how recommendation algorithms alter users' media consumption decisions and, indirectly, their political attitudes. Our results cast doubt on widely circulating theories of algorithmic polarization by showing that even heavy-handed (although short-term) perturbations of real-world recommendations have limited causal effects on policy attitudes. Given our inability to detect consistent evidence for algorithmic effects, we argue the burden of proof for claims about algorithm-induced polarization has shifted. Our methodology, which captures and modifies the output of real-world recommendation algorithms, offers a path forward for future investigations of black-box artificial intelligence systems. Our findings reveal practical limits to effect sizes that are feasibly detectable in academic experiments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信