Lei Guo, Yuting Hao, Ying Tang, Mengjia Wu, Rui Zhai, Chengquan Yang, Lingfei Xu, Zhigang Wang
{"title":"PKS1 involved in anthocyanin accumulation in red-skinned pear fruit.","authors":"Lei Guo, Yuting Hao, Ying Tang, Mengjia Wu, Rui Zhai, Chengquan Yang, Lingfei Xu, Zhigang Wang","doi":"10.1007/s00299-025-03444-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>PcPKS1 can prevent PcCSN5a from acting as an inhibitor of anthocyanin synthesis by binding to PcCSN5a, ultimately leading the accumulation of anthocyanins. Light is a crucial environmental factor that regulates anthocyanin accumulation in plants. However, the molecular mechanisms by which light signals influence anthocyanin accumulation in fruits have not yet been fully elucidated. We identified the differentially expressed gene Pyrus communis PHYTOCHROME KINASE SUBSTRATE 1 (PcPKS1), which is associated with anthocyanin accumulation in plants, in a previous study. Through measurements of the expression of PcPKS1 in 'Starkrimson' and 'Red Bartlett' pear fruit at various developmental stages and in different pear varieties, quantitative and transient expression experiments conducted on red and green skin tissues confirmed the relationship between PcPKS1 and anthocyanin accumulation. Pyrus communis COP9 SIGNALOSOME COMPLEX SUBUNIT 5A (PcCSN5a) protein, which interacts with PcPKS1, was identified from a yeast library screening. The interaction between the two proteins was validated through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split-luciferase (Split-LUC) experiments. Subcellular localization and co-localization experiments revealed that PcPKS1 was localized to the cell membrane, whereas PcCSN5a was localized to the cell membrane and nucleus, with PcPKS1 and PcCSN5a co-localized on the cell membrane. Transient expression in strawberry fruit indicated that PcPKS1 positively regulated anthocyanin accumulation, whereas PcCSN5a negatively regulated anthocyanin accumulation and diminished the capacity of PcPKS1 to promote anthocyanin accumulation. This study provides novel insights into the molecular mechanisms underlying light-regulated anthocyanin accumulation in red-skinned pear fruit.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"58"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03444-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: PcPKS1 can prevent PcCSN5a from acting as an inhibitor of anthocyanin synthesis by binding to PcCSN5a, ultimately leading the accumulation of anthocyanins. Light is a crucial environmental factor that regulates anthocyanin accumulation in plants. However, the molecular mechanisms by which light signals influence anthocyanin accumulation in fruits have not yet been fully elucidated. We identified the differentially expressed gene Pyrus communis PHYTOCHROME KINASE SUBSTRATE 1 (PcPKS1), which is associated with anthocyanin accumulation in plants, in a previous study. Through measurements of the expression of PcPKS1 in 'Starkrimson' and 'Red Bartlett' pear fruit at various developmental stages and in different pear varieties, quantitative and transient expression experiments conducted on red and green skin tissues confirmed the relationship between PcPKS1 and anthocyanin accumulation. Pyrus communis COP9 SIGNALOSOME COMPLEX SUBUNIT 5A (PcCSN5a) protein, which interacts with PcPKS1, was identified from a yeast library screening. The interaction between the two proteins was validated through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split-luciferase (Split-LUC) experiments. Subcellular localization and co-localization experiments revealed that PcPKS1 was localized to the cell membrane, whereas PcCSN5a was localized to the cell membrane and nucleus, with PcPKS1 and PcCSN5a co-localized on the cell membrane. Transient expression in strawberry fruit indicated that PcPKS1 positively regulated anthocyanin accumulation, whereas PcCSN5a negatively regulated anthocyanin accumulation and diminished the capacity of PcPKS1 to promote anthocyanin accumulation. This study provides novel insights into the molecular mechanisms underlying light-regulated anthocyanin accumulation in red-skinned pear fruit.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.