Integrated testing strategies for cost-sensitive time-efficient hazard classification of new chemicals: The case of skin sensitization.

IF 3 3区 医学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Risk Analysis Pub Date : 2025-02-17 DOI:10.1111/risa.17717
Marko Raseta, Jon Pitchford, James Cussens, John Doe
{"title":"Integrated testing strategies for cost-sensitive time-efficient hazard classification of new chemicals: The case of skin sensitization.","authors":"Marko Raseta, Jon Pitchford, James Cussens, John Doe","doi":"10.1111/risa.17717","DOIUrl":null,"url":null,"abstract":"<p><p>We offer an alternative approach to toxicological risk assessment of new chemicals. We combine Operations Research techniques with those from Machine Learning to tackle the decision-making process. More specifically, we use Markov decision processes and Bayesian networks to derive the optimal cost-sensitive time-efficient Integrated Testing Strategies for chemical hazard classification under minimal expected cost in a mathematically rigorous fashion. We develop Bayesian networks which outperform state-of-the-art mechanistic causal models previously reported. More specifically, these models exhibit accuracy of 90% and sensitivity and specificity of 93% and 84%, respectively. Moreover, the inferred Bayesian networks are of considerably simpler structure as they comprise only the permeation coefficient, octanol/water coefficient, and TIMES software compared to their counterparts already in print, which comprise 15 descriptors. We use these simplified causal models to study the effect of varying misclassification costs on the nature of the optimal policy by means of sensitivity analysis. We note such analysis was previously computationally infeasible due to the fact that the variables which comprised the mechanistic model were categorical assuming a large number of possible values. We find that a variety of optimal policies can emerge subject to different misclassification costs assumed. Theoretical modeling framework developed is illustrated on the concrete example of hazard classification of skin allergens of previously unknown toxicological characteristics via integrating data obtained from in silico assays alone thus contributing to the literature of toxicological decision making based on nonanimal tests.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.17717","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We offer an alternative approach to toxicological risk assessment of new chemicals. We combine Operations Research techniques with those from Machine Learning to tackle the decision-making process. More specifically, we use Markov decision processes and Bayesian networks to derive the optimal cost-sensitive time-efficient Integrated Testing Strategies for chemical hazard classification under minimal expected cost in a mathematically rigorous fashion. We develop Bayesian networks which outperform state-of-the-art mechanistic causal models previously reported. More specifically, these models exhibit accuracy of 90% and sensitivity and specificity of 93% and 84%, respectively. Moreover, the inferred Bayesian networks are of considerably simpler structure as they comprise only the permeation coefficient, octanol/water coefficient, and TIMES software compared to their counterparts already in print, which comprise 15 descriptors. We use these simplified causal models to study the effect of varying misclassification costs on the nature of the optimal policy by means of sensitivity analysis. We note such analysis was previously computationally infeasible due to the fact that the variables which comprised the mechanistic model were categorical assuming a large number of possible values. We find that a variety of optimal policies can emerge subject to different misclassification costs assumed. Theoretical modeling framework developed is illustrated on the concrete example of hazard classification of skin allergens of previously unknown toxicological characteristics via integrating data obtained from in silico assays alone thus contributing to the literature of toxicological decision making based on nonanimal tests.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Risk Analysis
Risk Analysis 数学-数学跨学科应用
CiteScore
7.50
自引率
10.50%
发文量
183
审稿时长
4.2 months
期刊介绍: Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include: • Human health and safety risks • Microbial risks • Engineering • Mathematical modeling • Risk characterization • Risk communication • Risk management and decision-making • Risk perception, acceptability, and ethics • Laws and regulatory policy • Ecological risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信