pH-dependent dissociation from CTLA-4 in early endosomes improves both safety and antitumor activity of anti-CTLA-4 antibodies.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Meiyu Zhang, Jinmei Li, Kepeng Yan, Haoyue Zhou, Song Mei, Benyu Wang, Dongyang Li, Xuexiang Du, Mingyue Liu, Peng Zhang, James K Fields, Lei Ye, Pan Zheng, Yang Liu, Michael J Lenardo, Yan Zhang
{"title":"pH-dependent dissociation from CTLA-4 in early endosomes improves both safety and antitumor activity of anti-CTLA-4 antibodies.","authors":"Meiyu Zhang, Jinmei Li, Kepeng Yan, Haoyue Zhou, Song Mei, Benyu Wang, Dongyang Li, Xuexiang Du, Mingyue Liu, Peng Zhang, James K Fields, Lei Ye, Pan Zheng, Yang Liu, Michael J Lenardo, Yan Zhang","doi":"10.1073/pnas.2422731122","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-CTLA-4 Abs (ACAs) are a breakthrough for cancer therapy, but their potential is limited by immunotherapy-related adverse events (irAE). We previously reported that ACAs with acidic pH-sensitive binding to CTLA-4 exhibit higher antitumor activity with fewer irAE. We now test a panel of variants of Ipilimumab (Ipi), the first ACA cancer therapeutic, for tumoricidal efficacy and irAE. Surprisingly, not all pH-sensitive Ipi variants exhibited an enhanced therapeutic index. Ipi13, which retained binding to CTLA-4 at pH 6.0 but dissociated at lower pH, showed no enhancement. By contrast, Ipi25, which dissociates from CTLA-4 at pH 6.0, the pH of the early endosome (EE), showed greater tumor regression and less severe irAE. Confocal microscopy showed that Ipi13 maintained colocalization with CTLA-4 at the late endosomes (LE) and lysosomes resulting in lysosomal degradation of CTLA-4. Conversely, Ipi25 did not colocalize with CTLA-4 in LE or lysosomes after endocytosis but allowed both proteins to transfer to recycling endosomes. EE dissociation was also characteristic of variants of Tremelimumab (Treme), another clinical ACA, that showed better efficacy and fewer side effects. Thus, our data reveal the significance of early intracellular dissociation from CTLA-4 to improve ACAs for safer and more effective cancer immunotherapy.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2422731122"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2422731122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-CTLA-4 Abs (ACAs) are a breakthrough for cancer therapy, but their potential is limited by immunotherapy-related adverse events (irAE). We previously reported that ACAs with acidic pH-sensitive binding to CTLA-4 exhibit higher antitumor activity with fewer irAE. We now test a panel of variants of Ipilimumab (Ipi), the first ACA cancer therapeutic, for tumoricidal efficacy and irAE. Surprisingly, not all pH-sensitive Ipi variants exhibited an enhanced therapeutic index. Ipi13, which retained binding to CTLA-4 at pH 6.0 but dissociated at lower pH, showed no enhancement. By contrast, Ipi25, which dissociates from CTLA-4 at pH 6.0, the pH of the early endosome (EE), showed greater tumor regression and less severe irAE. Confocal microscopy showed that Ipi13 maintained colocalization with CTLA-4 at the late endosomes (LE) and lysosomes resulting in lysosomal degradation of CTLA-4. Conversely, Ipi25 did not colocalize with CTLA-4 in LE or lysosomes after endocytosis but allowed both proteins to transfer to recycling endosomes. EE dissociation was also characteristic of variants of Tremelimumab (Treme), another clinical ACA, that showed better efficacy and fewer side effects. Thus, our data reveal the significance of early intracellular dissociation from CTLA-4 to improve ACAs for safer and more effective cancer immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信