Global diversity and energy of animals shaping the Earth's surface.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gemma L Harvey, Zareena Khan, Lindsey K Albertson, Martin Coombes, Matthew F Johnson, Stephen P Rice, Heather A Viles
{"title":"Global diversity and energy of animals shaping the Earth's surface.","authors":"Gemma L Harvey, Zareena Khan, Lindsey K Albertson, Martin Coombes, Matthew F Johnson, Stephen P Rice, Heather A Viles","doi":"10.1073/pnas.2415104122","DOIUrl":null,"url":null,"abstract":"<p><p>The collective influence of animals on the processes shaping the Earth's surface remains largely unknown, with most studies limited to individual species and well-known exemplars. To establish the global geomorphic significance of animals, we systematically reviewed and synthesized evidence across freshwater and terrestrial ecosystems. Over 600 animal taxa had reported geomorphic effects. For the 495 wild animals and 5 livestock identified to species level, we estimated their global abundance, and collective biomass and energy. While our census is global in scope, a lack of research in the tropics and subtropics, and on less visible animals, leaves them underrepresented in analyses. Most reported species are globally widespread, but some are rare, endemic, and/or threatened, leading to risks that key geomorphic processes cease before we fully understand them. We estimate the collective biomass in wild animal geomorphic agents at ≈0.2 Mt Carbon, equating to a biological energy content of ≈7.6 million GJ. If a conservative minimum 1% of this energy contributes to geomorphic work annually, this yields an energy contribution from wild animal geomorphic agents of ≈76,000 GJ-equivalent to the energy of hundreds of thousands of extreme floods. Uncertainties in biomass estimates and energy partitioning mean this value could credibly be an order of magnitude higher, and countless species remain unreported or undiscovered. The livestock estimates exceed the wild animals estimates by three orders of magnitude. The geomorphic energy of animals is far more influential than previously recognized and future losses, dispersal and introductions of zoogeomorphic species may induce substantive landscape changes.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2415104122"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2415104122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The collective influence of animals on the processes shaping the Earth's surface remains largely unknown, with most studies limited to individual species and well-known exemplars. To establish the global geomorphic significance of animals, we systematically reviewed and synthesized evidence across freshwater and terrestrial ecosystems. Over 600 animal taxa had reported geomorphic effects. For the 495 wild animals and 5 livestock identified to species level, we estimated their global abundance, and collective biomass and energy. While our census is global in scope, a lack of research in the tropics and subtropics, and on less visible animals, leaves them underrepresented in analyses. Most reported species are globally widespread, but some are rare, endemic, and/or threatened, leading to risks that key geomorphic processes cease before we fully understand them. We estimate the collective biomass in wild animal geomorphic agents at ≈0.2 Mt Carbon, equating to a biological energy content of ≈7.6 million GJ. If a conservative minimum 1% of this energy contributes to geomorphic work annually, this yields an energy contribution from wild animal geomorphic agents of ≈76,000 GJ-equivalent to the energy of hundreds of thousands of extreme floods. Uncertainties in biomass estimates and energy partitioning mean this value could credibly be an order of magnitude higher, and countless species remain unreported or undiscovered. The livestock estimates exceed the wild animals estimates by three orders of magnitude. The geomorphic energy of animals is far more influential than previously recognized and future losses, dispersal and introductions of zoogeomorphic species may induce substantive landscape changes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信