Control of flow behavior in complex fluids using automatic differentiation.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohammed G Alhashim, Kaylie Hausknecht, Michael P Brenner
{"title":"Control of flow behavior in complex fluids using automatic differentiation.","authors":"Mohammed G Alhashim, Kaylie Hausknecht, Michael P Brenner","doi":"10.1073/pnas.2403644122","DOIUrl":null,"url":null,"abstract":"<p><p>Inverse design of complex flows is notoriously challenging because of the high cost of high dimensional optimization. Usually, optimization problems are either restricted to few control parameters, or adjoint-based approaches are used to convert the optimization problem into a boundary value problem. Here, we show that the recent advances in automatic differentiation (AD) provide a generic platform for solving inverse problems in complex fluids. To demonstrate the versatility of the approach, we solve an array of optimization problems related to active matter motion in Newtonian fluids, dispersion in structured porous media, and mixing in journal bearing. Each of these problems highlights the advantages of AD in ease of implementation and computational efficiency to solve high-dimensional optimization problems involving particle-laden flows.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2403644122"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2403644122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse design of complex flows is notoriously challenging because of the high cost of high dimensional optimization. Usually, optimization problems are either restricted to few control parameters, or adjoint-based approaches are used to convert the optimization problem into a boundary value problem. Here, we show that the recent advances in automatic differentiation (AD) provide a generic platform for solving inverse problems in complex fluids. To demonstrate the versatility of the approach, we solve an array of optimization problems related to active matter motion in Newtonian fluids, dispersion in structured porous media, and mixing in journal bearing. Each of these problems highlights the advantages of AD in ease of implementation and computational efficiency to solve high-dimensional optimization problems involving particle-laden flows.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信