{"title":"A bacterial effector manipulates host lysosomal protease activity-dependent plasticity in cell death modalities to facilitate infection.","authors":"Zhe Lu, Yong Zhang, Yanzhao Zhong, Lihua Qiang, Pupu Ge, Zehui Lei, Mengyuan Zhao, Yingxu Fang, Bingxi Li, Jing Wang, Qiyao Chai, Cui Hua Liu","doi":"10.1073/pnas.2406715122","DOIUrl":null,"url":null,"abstract":"<p><p>Crosstalk between cell death programs confers appropriate host anti-infection immune responses, but how pathogens co-opt host molecular switches of cell death pathways to reprogram cell death modalities for facilitating infection remains largely unexplored. Here, we identify mammalian cell entry 3C (Mce3C) as a pathogenic cell death regulator secreted by <i>Mycobacterium tuberculosis</i> (Mtb), which causes tuberculosis featured with lung inflammation and necrosis. Mce3C binds host cathepsin B (CTSB), a noncaspase protease acting as a lysosome-derived molecular determinant of cell death modalities, to inhibit its protease activity toward BH3-interacting domain death agonist (BID) and receptor-interacting protein kinase 1 (RIPK1), thereby preventing the production of proapoptotic truncated BID (tBID) while maintaining the abundance of pronecroptotic RIPK1. Disrupting the Mce3C-CTSB interaction promotes host apoptosis while suppressing necroptosis with attenuated Mtb survival and mitigated lung immunopathology in mice. Thus, pathogens manipulate host lysosomal protease activity-dependent plasticity in cell death modalities to promote infection and pathogenicity.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2406715122"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2406715122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crosstalk between cell death programs confers appropriate host anti-infection immune responses, but how pathogens co-opt host molecular switches of cell death pathways to reprogram cell death modalities for facilitating infection remains largely unexplored. Here, we identify mammalian cell entry 3C (Mce3C) as a pathogenic cell death regulator secreted by Mycobacterium tuberculosis (Mtb), which causes tuberculosis featured with lung inflammation and necrosis. Mce3C binds host cathepsin B (CTSB), a noncaspase protease acting as a lysosome-derived molecular determinant of cell death modalities, to inhibit its protease activity toward BH3-interacting domain death agonist (BID) and receptor-interacting protein kinase 1 (RIPK1), thereby preventing the production of proapoptotic truncated BID (tBID) while maintaining the abundance of pronecroptotic RIPK1. Disrupting the Mce3C-CTSB interaction promotes host apoptosis while suppressing necroptosis with attenuated Mtb survival and mitigated lung immunopathology in mice. Thus, pathogens manipulate host lysosomal protease activity-dependent plasticity in cell death modalities to promote infection and pathogenicity.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.