A W D Larkum, P G Falkowski, Dianne Edwards, C B Osmond, H Lambers, P Sanchez-Baracaldo, R J Ritchie, J W Runcie, P J Ralph, M Westoby, S Maberly, H Griffiths, F A Smith, J Beardall
{"title":"John Raven, FRS, FRSE: a truly great innovator in plant physiology, photosynthesis and much more.","authors":"A W D Larkum, P G Falkowski, Dianne Edwards, C B Osmond, H Lambers, P Sanchez-Baracaldo, R J Ritchie, J W Runcie, P J Ralph, M Westoby, S Maberly, H Griffiths, F A Smith, J Beardall","doi":"10.1007/s11120-025-01139-4","DOIUrl":null,"url":null,"abstract":"<p><p>This is a tribute to a truly inspirational plant biologist, Prof. John A. Raven, FRS, FRSE (25th June 1941- 23rd May 2024), who died at the age of 82. He was a leader in the field of evolution and physiology of algae and land plants. His research touched on many areas including photosynthesis, ion transport, carbon utilisation, mineral use, such as silicon, iron and molybdenum, the evolution of phytoplankton, the evolution of root systems, the impact of global change, especially on the acidification of the oceans, carbon gain and water use in early land plants, and ways of detecting extraterrestrial photosynthesis. Beginning his research career in the Botany School, University of Cambridge, John studied ion uptake in a giant algal cell. This was at the time of great strides brought about by Peter Mitchell (1920-1992) in elucidating the role of energy generation in mitochondria and chloroplasts and the coupling of ion transport systems to energy generation. With Enid MacRobbie and Andrew Smith, John pioneered early work on the involvement of ion transport in the growth and metabolism of plant cells.On leaving Cambridge John took up a lectureship at the University of Dundee in 1971, where he was still attached upon his death. His primary focus over the years, with one of us (Paul Falkowski), was on phytoplankton, the photosynthetic microalgae of the oceans. Still, his publication list of 5 books and over 600 scientific papers spans a very broad range. The many highly cited papers (see Table 1) attest to an outstanding innovator, who influenced a multitude of students and coworkers and a very wide readership worldwide. At the personal level, John Raven was a wonderful human being; he had an extraordinary memory, dredging up facts and little-known scientific papers, like a scientific magician, but at the same time making humorous jokes and involving his colleagues in fun and sympathetic appreciation. Table 1 Ten best cited articles (from google scholar) Citations Date Aquatic Photosynthesis, 3rd Edition P.G. Falkowski & J.A. Raven Princeton University Press, 2013 3854 2013 The evolution of modern eukaryotic phytoplankton P.G. Falkowski, M.E. Katz, A.H. Knoll, A. Quigg, J.A. Raven, et al Science 305, 354-360 1790 2004 CO<sub>2</sub> concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution M. Giordano, J. Beardall & J.A. Raven Annu. Rev. Plant Biol. 56 (1), 99-131 1648 2005 Algae as nutritional food sources: revisiting our understanding M.L. Wells, P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, et al Journal of applied phycology 29, 949-982 1527 2017 Plant Nutrient acquisition strategies change with soil age H. Lambers, J.A. Raven, G.R. Shaver & S.E. Smith Trends in ecology & evolution 23, 95-103 1488 2008 Ocean acidification due to increasing atmospheric carbon dioxide J. Raven, K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, et al The Royal Society, Policy Document, June 2005 1470 2005 Phytoplankton in a changing world: cell size and elemental stoichiometry Z.V. Finkel, J. Beardall, K.J. Flynn, A. Quigg, T.A.V. Rees & J.A. Raven Journal of plankton research 32, 119-137 1198 2010 Opportunities for improving phosphorus efficiency in crop plants E.J. Veneklaas, H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, et al New phytologist 195, 306-320 951 2012 Adaptation of unicellular algae to irradiance: an analysis of strategies K. Richardson, J. Beardall & J.A. Raven New Phytologist 93, 157-191 914 1983 Nitrogen assimilation and transport in vascular land plants in relation to Intracellular pH regulation J.A. Raven & F.A. Smith New Phytologist 76, 415-431 893 1976 Temperature and algal growth J.A. Raven & R.J. Geider New phytologist 110, 441-461 867 1988 The role of trace metals in photosynthetic electron transport in O<sub>2</sub> -evolving organisms J.A. Raven, M.C.W. Evans & R.E. Korb Photosynthesis Research 60, 111-150 840 1999.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 2","pages":"18"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-025-01139-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This is a tribute to a truly inspirational plant biologist, Prof. John A. Raven, FRS, FRSE (25th June 1941- 23rd May 2024), who died at the age of 82. He was a leader in the field of evolution and physiology of algae and land plants. His research touched on many areas including photosynthesis, ion transport, carbon utilisation, mineral use, such as silicon, iron and molybdenum, the evolution of phytoplankton, the evolution of root systems, the impact of global change, especially on the acidification of the oceans, carbon gain and water use in early land plants, and ways of detecting extraterrestrial photosynthesis. Beginning his research career in the Botany School, University of Cambridge, John studied ion uptake in a giant algal cell. This was at the time of great strides brought about by Peter Mitchell (1920-1992) in elucidating the role of energy generation in mitochondria and chloroplasts and the coupling of ion transport systems to energy generation. With Enid MacRobbie and Andrew Smith, John pioneered early work on the involvement of ion transport in the growth and metabolism of plant cells.On leaving Cambridge John took up a lectureship at the University of Dundee in 1971, where he was still attached upon his death. His primary focus over the years, with one of us (Paul Falkowski), was on phytoplankton, the photosynthetic microalgae of the oceans. Still, his publication list of 5 books and over 600 scientific papers spans a very broad range. The many highly cited papers (see Table 1) attest to an outstanding innovator, who influenced a multitude of students and coworkers and a very wide readership worldwide. At the personal level, John Raven was a wonderful human being; he had an extraordinary memory, dredging up facts and little-known scientific papers, like a scientific magician, but at the same time making humorous jokes and involving his colleagues in fun and sympathetic appreciation. Table 1 Ten best cited articles (from google scholar) Citations Date Aquatic Photosynthesis, 3rd Edition P.G. Falkowski & J.A. Raven Princeton University Press, 2013 3854 2013 The evolution of modern eukaryotic phytoplankton P.G. Falkowski, M.E. Katz, A.H. Knoll, A. Quigg, J.A. Raven, et al Science 305, 354-360 1790 2004 CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution M. Giordano, J. Beardall & J.A. Raven Annu. Rev. Plant Biol. 56 (1), 99-131 1648 2005 Algae as nutritional food sources: revisiting our understanding M.L. Wells, P. Potin, J.S. Craigie, J.A. Raven, S.S. Merchant, et al Journal of applied phycology 29, 949-982 1527 2017 Plant Nutrient acquisition strategies change with soil age H. Lambers, J.A. Raven, G.R. Shaver & S.E. Smith Trends in ecology & evolution 23, 95-103 1488 2008 Ocean acidification due to increasing atmospheric carbon dioxide J. Raven, K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, et al The Royal Society, Policy Document, June 2005 1470 2005 Phytoplankton in a changing world: cell size and elemental stoichiometry Z.V. Finkel, J. Beardall, K.J. Flynn, A. Quigg, T.A.V. Rees & J.A. Raven Journal of plankton research 32, 119-137 1198 2010 Opportunities for improving phosphorus efficiency in crop plants E.J. Veneklaas, H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, et al New phytologist 195, 306-320 951 2012 Adaptation of unicellular algae to irradiance: an analysis of strategies K. Richardson, J. Beardall & J.A. Raven New Phytologist 93, 157-191 914 1983 Nitrogen assimilation and transport in vascular land plants in relation to Intracellular pH regulation J.A. Raven & F.A. Smith New Phytologist 76, 415-431 893 1976 Temperature and algal growth J.A. Raven & R.J. Geider New phytologist 110, 441-461 867 1988 The role of trace metals in photosynthetic electron transport in O2 -evolving organisms J.A. Raven, M.C.W. Evans & R.E. Korb Photosynthesis Research 60, 111-150 840 1999.
期刊介绍:
Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.