Identification of a missing Pictet-Spenglerase in the Gloriosa superba L. colchicine biosynthesis pathway.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingyi Sun, Huapeng Sun, Zhiqiang Xiong, Xuefei Jiang, Xiaona Fu, Hanqing Cong, Fei Qiao
{"title":"Identification of a missing Pictet-Spenglerase in the Gloriosa superba L. colchicine biosynthesis pathway.","authors":"Jingyi Sun, Huapeng Sun, Zhiqiang Xiong, Xuefei Jiang, Xiaona Fu, Hanqing Cong, Fei Qiao","doi":"10.1007/s11033-025-10364-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colchicine is a natural medicinal alkaloid from Gloriosa superba L. The biosynthetic pathway of colchicine has been nearly completely revealed, but the Pictet-Spenglerase that catalyses the formation of the crucial intermediate 1-phenethylisoquinoline scaffold has not been identified. Identification and characterization of the missing Pictet-Spenglerase will provide the last piece of the puzzle of colchicine biosynthesis in G. superba.</p><p><strong>Results: </strong>Based on the G. superba transcriptome database, orthologues of 1-phenethylisoquinoline scaffold synthase (PSS) were identified and screened, and one candidate gene sequence, GsPSS, was identified. GsPSS has a total length of 480 bp, and multisequence alignment revealed that GsPSS had two common conserved catalytic residues. The subcellular results indicated that GsPSS was localized in the cytoplasm. After heterologous expression in E. coli and purification, in vitro enzyme assays indicated that the recombinant GsPSS protein could catalyse the conversion of 3-(4-Hydroxyphenyl) propanal (4-HDCA) and dopamine to generate a 1-phenethylisoquinoline scaffold.</p><p><strong>Conclusion: </strong>In this study, we identified the last previously unknown enzyme involved in the biosynthesis of colchicine. This enzyme belongs to the Pr10/Bet v1 family and catalyses the committed step in colchicine biosynthesis. The knowledge gained here will help to complement and improve the colchicine biosynthetic pathway and facilitate the biosynthesis of colchicine via metabolic engineering.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"244"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10364-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colchicine is a natural medicinal alkaloid from Gloriosa superba L. The biosynthetic pathway of colchicine has been nearly completely revealed, but the Pictet-Spenglerase that catalyses the formation of the crucial intermediate 1-phenethylisoquinoline scaffold has not been identified. Identification and characterization of the missing Pictet-Spenglerase will provide the last piece of the puzzle of colchicine biosynthesis in G. superba.

Results: Based on the G. superba transcriptome database, orthologues of 1-phenethylisoquinoline scaffold synthase (PSS) were identified and screened, and one candidate gene sequence, GsPSS, was identified. GsPSS has a total length of 480 bp, and multisequence alignment revealed that GsPSS had two common conserved catalytic residues. The subcellular results indicated that GsPSS was localized in the cytoplasm. After heterologous expression in E. coli and purification, in vitro enzyme assays indicated that the recombinant GsPSS protein could catalyse the conversion of 3-(4-Hydroxyphenyl) propanal (4-HDCA) and dopamine to generate a 1-phenethylisoquinoline scaffold.

Conclusion: In this study, we identified the last previously unknown enzyme involved in the biosynthesis of colchicine. This enzyme belongs to the Pr10/Bet v1 family and catalyses the committed step in colchicine biosynthesis. The knowledge gained here will help to complement and improve the colchicine biosynthetic pathway and facilitate the biosynthesis of colchicine via metabolic engineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信