EEG microstate syntax analysis: A review of methodological challenges and advances

IF 4.7 2区 医学 Q1 NEUROIMAGING
David Haydock , Shabnam Kadir , Robert Leech , Chrystopher L. Nehaniv , Elena Antonova
{"title":"EEG microstate syntax analysis: A review of methodological challenges and advances","authors":"David Haydock ,&nbsp;Shabnam Kadir ,&nbsp;Robert Leech ,&nbsp;Chrystopher L. Nehaniv ,&nbsp;Elena Antonova","doi":"10.1016/j.neuroimage.2025.121090","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG) microstates are “quasi-stable” periods of electrical potential distribution in multichannel EEG derived from peaks in Global Field Power. Transitions between microstates form a temporal sequence that may reflect underlying neural dynamics. Mounting evidence indicates that EEG microstate sequences have long-range, non-Markovian dependencies, suggesting a complex underlying process that drives EEG microstate syntax (i.e., the transitional dynamics between microstates). Despite growing interest in EEG microstate syntax, the field remains fragmented, with inconsistent terminologies used between studies and a lack of defined methodological categories. To advance the understanding of functional significance of microstates and to facilitate methodological comparability and finding replicability across studies, we: i) derive categories of syntax analysis methods, reviewing how each may be utilised most readily; ii) define three “time-modes” for EEG microstate sequence construction; and iii) outline general issues concerning current microstate syntax analysis methods, suggesting that the microstate models derived using these methods are cross-referenced against models of continuous EEG. We advocate for these continuous approaches as they do not assume a winner-takes-all model inherent in the microstate derivation methods and contextualise the relationship between microstate models and EEG data. They may also allow for the development of more robust associative models between microstates and functional Magnetic Resonance Imaging data.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"309 ","pages":"Article 121090"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) microstates are “quasi-stable” periods of electrical potential distribution in multichannel EEG derived from peaks in Global Field Power. Transitions between microstates form a temporal sequence that may reflect underlying neural dynamics. Mounting evidence indicates that EEG microstate sequences have long-range, non-Markovian dependencies, suggesting a complex underlying process that drives EEG microstate syntax (i.e., the transitional dynamics between microstates). Despite growing interest in EEG microstate syntax, the field remains fragmented, with inconsistent terminologies used between studies and a lack of defined methodological categories. To advance the understanding of functional significance of microstates and to facilitate methodological comparability and finding replicability across studies, we: i) derive categories of syntax analysis methods, reviewing how each may be utilised most readily; ii) define three “time-modes” for EEG microstate sequence construction; and iii) outline general issues concerning current microstate syntax analysis methods, suggesting that the microstate models derived using these methods are cross-referenced against models of continuous EEG. We advocate for these continuous approaches as they do not assume a winner-takes-all model inherent in the microstate derivation methods and contextualise the relationship between microstate models and EEG data. They may also allow for the development of more robust associative models between microstates and functional Magnetic Resonance Imaging data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信