{"title":"Vitamin D derivatives inhibit mesenchymal transition of mesothelial cells and mitigate peritoneal dissemination of ovarian cancer.","authors":"Kazuhisa Fujita, Maia Hayashi, Masato Yoshihara, Satoshi Nomura, Kazuhisa Kitami, Emiri Miyamoto, Shohei Iyoshi, Kazumasa Mogi, Hiroki Fujimoto, Kaname Uno, Atsushi Kunishima, Yoshihiko Yamakita, Hiroyuki Tomita, Rino Tsutsumi, Ryota Sakamoto, Kazuo Nagasawa, Yusuke Masuo, Takumi Nishiuchi, Kiyosumi Shibata, Atsushi Enomoto, Hiroaki Kajiyama","doi":"10.1007/s00795-025-00424-4","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OvCa) is a leading cause of gynecological cancer-related mortality, primarily due to peritoneal dissemination, which facilitates metastasis in the abdominal cavity. This study explored the potential of vitamin D and its synthetic derivatives in mitigating peritoneal dissemination by modulating the behavior of mesothelial cells (MCs). Vitamin D, through its receptor (VDR), is known to influence cancer progression, and our findings demonstrate that vitamin D derivatives can inhibit mesenchymal transition of MCs induced by TGF-β1, a key driver of peritoneal dissemination. This study used patient-derived primary MCs and in vivo mouse model to assess the effects of vitamin D derivatives on cell morphology, gene expression, and OvCa cell adhesion. Two vitamin D derivatives, VDR agonist, showed significant efficacy in maintaining epithelial-like MC morphology, reducing TGF-β1-induced changes, and inhibiting OvCa cell adhesion to the peritoneum, similar to calcitriol. Conversely, the VDR antagonist derivative induced MC apoptosis, highlighting the essential role of vitamin D in MC survival. These findings suggest that vitamin D derivatives could serve as promising therapeutic agents for OvCa by preserving peritoneal homeostasis and preventing metastasis. Further research is required to explore a broader range of derivatives and their underlying molecular mechanisms.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-025-00424-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer (OvCa) is a leading cause of gynecological cancer-related mortality, primarily due to peritoneal dissemination, which facilitates metastasis in the abdominal cavity. This study explored the potential of vitamin D and its synthetic derivatives in mitigating peritoneal dissemination by modulating the behavior of mesothelial cells (MCs). Vitamin D, through its receptor (VDR), is known to influence cancer progression, and our findings demonstrate that vitamin D derivatives can inhibit mesenchymal transition of MCs induced by TGF-β1, a key driver of peritoneal dissemination. This study used patient-derived primary MCs and in vivo mouse model to assess the effects of vitamin D derivatives on cell morphology, gene expression, and OvCa cell adhesion. Two vitamin D derivatives, VDR agonist, showed significant efficacy in maintaining epithelial-like MC morphology, reducing TGF-β1-induced changes, and inhibiting OvCa cell adhesion to the peritoneum, similar to calcitriol. Conversely, the VDR antagonist derivative induced MC apoptosis, highlighting the essential role of vitamin D in MC survival. These findings suggest that vitamin D derivatives could serve as promising therapeutic agents for OvCa by preserving peritoneal homeostasis and preventing metastasis. Further research is required to explore a broader range of derivatives and their underlying molecular mechanisms.
期刊介绍:
Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.