An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G?

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiuhua Xie, Yuange Duan
{"title":"An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G?","authors":"Qiuhua Xie, Yuange Duan","doi":"10.1007/s00239-025-10238-8","DOIUrl":null,"url":null,"abstract":"<p><p>A-to-I mRNA editing resembles A-to-G mutations. Functional mRNA editing, representing only a corner of total editing events, can be inferred from the experimental removal of editing. However, it is intuitive to ask why evolution chose RNA editing rather than directly (and simply) changing the genomic sequence to G? If G is better than A, then drift or constructive neutral evolution (CNE) theory can explain the emergence of such editing, but it is still unclear why the exemplified conserved editing is perfectly maintained without observing any subsequent A-to-G DNA mutations? Virtually every functional and conserved mRNA editing site faces this ultimate question until one justifies that being editable is better than a hardwired genomic allele. While the advantage of editability has been validated in fungi, this ultimate question has not been answered for any functional editing sites in animals. By providing several conceptual arguments and specific examples, we propose that proving the evolutionary adaptiveness of an editing site is far more difficult than revealing its function.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10238-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A-to-I mRNA editing resembles A-to-G mutations. Functional mRNA editing, representing only a corner of total editing events, can be inferred from the experimental removal of editing. However, it is intuitive to ask why evolution chose RNA editing rather than directly (and simply) changing the genomic sequence to G? If G is better than A, then drift or constructive neutral evolution (CNE) theory can explain the emergence of such editing, but it is still unclear why the exemplified conserved editing is perfectly maintained without observing any subsequent A-to-G DNA mutations? Virtually every functional and conserved mRNA editing site faces this ultimate question until one justifies that being editable is better than a hardwired genomic allele. While the advantage of editability has been validated in fungi, this ultimate question has not been answered for any functional editing sites in animals. By providing several conceptual arguments and specific examples, we propose that proving the evolutionary adaptiveness of an editing site is far more difficult than revealing its function.

功能性a -to- i mRNA编辑的终极问题:为什么不是基因组G?
A-to-I mRNA编辑类似于A-to-G突变。功能性mRNA编辑仅代表全部编辑事件的一角,可以从实验中去除编辑推断出来。然而,直观地问为什么进化选择RNA编辑而不是直接(简单地)将基因组序列改变为G?如果G比A更好,那么漂移或建设性中性进化(CNE)理论可以解释这种编辑的出现,但仍然不清楚为什么示例的保守编辑在没有观察到任何随后的A-to-G DNA突变的情况下得以完美维持?事实上,每一个功能性和保守的mRNA编辑位点都面临着这个终极问题,直到有人证明可编辑比固定的基因组等位基因更好。虽然可编辑性的优势已经在真菌中得到了验证,但这个最终的问题还没有在动物的任何功能编辑位点上得到回答。通过提供几个概念性的论点和具体的例子,我们提出证明编辑站点的进化适应性远比揭示其功能要困难得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信