Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Jianfei Sun, Liping Lu, Yingtao Lian, Song Xu, Ying Zhu, Yanping Wu, Qianhui Lin, Jing Hou, Yinping Li, Zhui Yu
{"title":"Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice.","authors":"Jianfei Sun, Liping Lu, Yingtao Lian, Song Xu, Ying Zhu, Yanping Wu, Qianhui Lin, Jing Hou, Yinping Li, Zhui Yu","doi":"10.1186/s13041-025-01179-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac arrest (CA) is one of the most common illnesses worldwide. Post-CA brain injury (PCABI) is a major cause of death and poor recovery in CA patients and the current CA treatments are not very effective. The microbiome-gut-brain axis has been found to significantly affect brain ischemia injury. Furthermore, in ischemic stroke patients, short-chain fatty acids (SCFA), especially sodium butyrate (SB), have been observed to promote neuroprotective effects by modulating inflammatory response and microglial polarization in the cortex. However, the precise mechanism of SB on CA-induced injury remains elusive. Therefore, this research study established an oxygen-glucose deprivation and reoxygenation (OGD/R) model using BV-2 microglial and HT22 cells to simulate cerebral ischemia/reperfusion injury in vitro and a potassium chloride-induced CA mouse model to mimic CA in vivo. The data revealed that SB markedly improved neurological scores and reduced neuronal death and apoptosis. Moreover, it reduced M1 microglia and neuroinflammation in CA mice. In addition, SB increased intestinal integrity and alleviated systemic inflammation. The 16S rDNA sequencing analysis indicated that SB intervention mitigated CA-induced gut microbiota dysbiosis and SCFA depletion. It was also observed that CA mice's brain and OGD/R-exposed BV2 cells had substantially increased levels of MyD88, phosphorylated NF-κB p65, and TLR4 proteins, which were reduced after SB treatment. In summary, this study revealed that SB can protect against cerebral ischemia-reperfusion injury by controlling microglia polarization and microbiome-gut-brain axis to inhibit brain inflammation via the TLR4/MyD88/NF-κB pathway.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"13"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01179-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac arrest (CA) is one of the most common illnesses worldwide. Post-CA brain injury (PCABI) is a major cause of death and poor recovery in CA patients and the current CA treatments are not very effective. The microbiome-gut-brain axis has been found to significantly affect brain ischemia injury. Furthermore, in ischemic stroke patients, short-chain fatty acids (SCFA), especially sodium butyrate (SB), have been observed to promote neuroprotective effects by modulating inflammatory response and microglial polarization in the cortex. However, the precise mechanism of SB on CA-induced injury remains elusive. Therefore, this research study established an oxygen-glucose deprivation and reoxygenation (OGD/R) model using BV-2 microglial and HT22 cells to simulate cerebral ischemia/reperfusion injury in vitro and a potassium chloride-induced CA mouse model to mimic CA in vivo. The data revealed that SB markedly improved neurological scores and reduced neuronal death and apoptosis. Moreover, it reduced M1 microglia and neuroinflammation in CA mice. In addition, SB increased intestinal integrity and alleviated systemic inflammation. The 16S rDNA sequencing analysis indicated that SB intervention mitigated CA-induced gut microbiota dysbiosis and SCFA depletion. It was also observed that CA mice's brain and OGD/R-exposed BV2 cells had substantially increased levels of MyD88, phosphorylated NF-κB p65, and TLR4 proteins, which were reduced after SB treatment. In summary, this study revealed that SB can protect against cerebral ischemia-reperfusion injury by controlling microglia polarization and microbiome-gut-brain axis to inhibit brain inflammation via the TLR4/MyD88/NF-κB pathway.

丁酸钠通过调节心脏骤停小鼠TLR4/MyD88/NF-κB通路和微生物群-肠-脑轴,减轻小胶质细胞介导的神经炎症。
心脏骤停(CA)是世界上最常见的疾病之一。CA后脑损伤(PCABI)是CA患者死亡和恢复不良的主要原因,目前CA的治疗效果不佳。微生物组-肠-脑轴已被发现对脑缺血损伤有显著影响。此外,在缺血性卒中患者中,短链脂肪酸(SCFA),特别是丁酸钠(SB),已被观察到通过调节炎症反应和皮层的小胶质细胞极化来促进神经保护作用。然而,SB对ca诱导的损伤的确切机制尚不清楚。因此,本研究利用BV-2小胶质细胞和HT22细胞建立体外模拟脑缺血/再灌注损伤的氧-葡萄糖剥夺和再氧合(OGD/R)模型和氯化钾诱导的CA小鼠模型来模拟体内CA。数据显示,SB显著改善神经学评分,减少神经元死亡和凋亡。此外,它还能减少CA小鼠的M1小胶质细胞和神经炎症。此外,SB还能提高肠道完整性,减轻全身炎症。16S rDNA测序分析表明,SB干预减轻了ca诱导的肠道微生物群失调和SCFA消耗。我们还观察到,CA小鼠脑和OGD/ r暴露的BV2细胞MyD88、磷酸化NF-κB p65和TLR4蛋白水平显著升高,经SB处理后,这些蛋白水平降低。综上所述,本研究揭示SB可通过TLR4/MyD88/NF-κB通路,通过调控小胶质细胞极化和微生物-肠-脑轴抑制脑炎症,从而对脑缺血-再灌注损伤起到保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信