Comparative performance of PD-L1 scoring by pathologists and AI algorithms.

IF 3.9 2区 医学 Q2 CELL BIOLOGY
Histopathology Pub Date : 2025-02-17 DOI:10.1111/his.15432
Markus Plass, Gheorghe-Emilian Olteanu, Sanja Dacic, Izidor Kern, Martin Zacharias, Helmut Popper, Junya Fukuoka, Sosuke Ishijima, Michaela Kargl, Christoph Murauer, Lipika Kalson, Luka Brcic
{"title":"Comparative performance of PD-L1 scoring by pathologists and AI algorithms.","authors":"Markus Plass, Gheorghe-Emilian Olteanu, Sanja Dacic, Izidor Kern, Martin Zacharias, Helmut Popper, Junya Fukuoka, Sosuke Ishijima, Michaela Kargl, Christoph Murauer, Lipika Kalson, Luka Brcic","doi":"10.1111/his.15432","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study evaluates the comparative effectiveness of pathologists versus artificial intelligence (AI) algorithms in scoring PD-L1 expression in non-small cell lung carcinoma (NSCLC). Immune-checkpoint inhibitors have revolutionized NSCLC treatment, with PD-L1 expression, measured as the tumour proportion score (TPS), serving as a critical predictive biomarker for therapeutic response.</p><p><strong>Methods and results: </strong>In our analysis, 51 SP263-stained NSCLC cases were scored by six pathologists using light microscopy and whole-slide images (WSI), alongside evaluations by two commercially available software tools: uPath software (Roche) and the PD-L1 Lung Cancer TME application (Visiopharm). The study examined intra- and interobserver agreement among pathologists at TPS cutoffs of 1% and 50%, revealing moderate interobserver agreement (Fleiss' kappa 0.558) for TPS <1% and almost perfect agreement (Fleiss' kappa 0.873) for TPS ≥50%. Intraobserver consistency was high, with Cohen's kappa ranging from 0.726 to 1.0. Comparisons between the AI algorithms and the median pathologist scores showed fair agreement for uPath (Fleiss' kappa 0.354) and substantial agreement for the Visiopharm application (Fleiss' kappa 0.672) at the 50% TPS cutoff.</p><p><strong>Conclusion: </strong>These results indicate that while there is strong interobserver concordance among pathologists at higher TPS levels, the performance of AI algorithms is less consistent. The study underscores the need for further refinement of AI tools to match the reliability of expert human evaluation, particularly in critical clinical decision-making contexts.</p>","PeriodicalId":13219,"journal":{"name":"Histopathology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histopathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/his.15432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study evaluates the comparative effectiveness of pathologists versus artificial intelligence (AI) algorithms in scoring PD-L1 expression in non-small cell lung carcinoma (NSCLC). Immune-checkpoint inhibitors have revolutionized NSCLC treatment, with PD-L1 expression, measured as the tumour proportion score (TPS), serving as a critical predictive biomarker for therapeutic response.

Methods and results: In our analysis, 51 SP263-stained NSCLC cases were scored by six pathologists using light microscopy and whole-slide images (WSI), alongside evaluations by two commercially available software tools: uPath software (Roche) and the PD-L1 Lung Cancer TME application (Visiopharm). The study examined intra- and interobserver agreement among pathologists at TPS cutoffs of 1% and 50%, revealing moderate interobserver agreement (Fleiss' kappa 0.558) for TPS <1% and almost perfect agreement (Fleiss' kappa 0.873) for TPS ≥50%. Intraobserver consistency was high, with Cohen's kappa ranging from 0.726 to 1.0. Comparisons between the AI algorithms and the median pathologist scores showed fair agreement for uPath (Fleiss' kappa 0.354) and substantial agreement for the Visiopharm application (Fleiss' kappa 0.672) at the 50% TPS cutoff.

Conclusion: These results indicate that while there is strong interobserver concordance among pathologists at higher TPS levels, the performance of AI algorithms is less consistent. The study underscores the need for further refinement of AI tools to match the reliability of expert human evaluation, particularly in critical clinical decision-making contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Histopathology
Histopathology 医学-病理学
CiteScore
10.20
自引率
4.70%
发文量
239
审稿时长
1 months
期刊介绍: Histopathology is an international journal intended to be of practical value to surgical and diagnostic histopathologists, and to investigators of human disease who employ histopathological methods. Our primary purpose is to publish advances in pathology, in particular those applicable to clinical practice and contributing to the better understanding of human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信