Guicong Sun, Mengxin Zheng, Yongxian Fan, Xiaoyong Pan
{"title":"MVGNCDA: Identifying Potential circRNA-Disease Associations Based on Multi-view Graph Convolutional Networks and Network Embeddings.","authors":"Guicong Sun, Mengxin Zheng, Yongxian Fan, Xiaoyong Pan","doi":"10.1007/s12539-025-00690-x","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidences have indicated that circular RNAs play a crucial role in the onset and progression of various diseases. However, exploring potential disease-associated circRNAs using conventional experimental techniques remains both time-intensive and costly. Recently, various computational approaches have been developed to detect the circRNA-disease associations. Nevertheless, due to the sparsity of the data and the inefficient utilization of similarity representation, it is still a challenge to effectively detect unknown circRNA-disease associations using multisource data. In this work, we propose an innovative computational framework, MVGNCDA, which merges a multi-view graph convolutional network (GCN) and biased random walk-based network embeddings to evaluate potential circRNA-disease associations from multisource data. First, we calculate disease semantic similarity, circRNA functional similarity, and their Gaussian interaction profile (GIP) kernel and cosine similarity. MVGNCDA utilizes multi-view GCNs to extract local node embeddings of diseases and circRNAs in the context of multisource information. Then, we construct a heterogeneous network utilizing integrated similarity and verified circRNA-disease associations, which is subsequently used to learn global node embeddings. Furthermore, the final fused local and global node embeddings are decoded to evaluate the circRNA-disease associations using a bilinear decoder. The fivefold cross-validation results demonstrate that MVGNCDA outperforms existing methods across five public datasets. Moreover, case study also confirms that MVGNCDA is capable of efficiently identifying unknown circRNA-disease associations.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00690-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidences have indicated that circular RNAs play a crucial role in the onset and progression of various diseases. However, exploring potential disease-associated circRNAs using conventional experimental techniques remains both time-intensive and costly. Recently, various computational approaches have been developed to detect the circRNA-disease associations. Nevertheless, due to the sparsity of the data and the inefficient utilization of similarity representation, it is still a challenge to effectively detect unknown circRNA-disease associations using multisource data. In this work, we propose an innovative computational framework, MVGNCDA, which merges a multi-view graph convolutional network (GCN) and biased random walk-based network embeddings to evaluate potential circRNA-disease associations from multisource data. First, we calculate disease semantic similarity, circRNA functional similarity, and their Gaussian interaction profile (GIP) kernel and cosine similarity. MVGNCDA utilizes multi-view GCNs to extract local node embeddings of diseases and circRNAs in the context of multisource information. Then, we construct a heterogeneous network utilizing integrated similarity and verified circRNA-disease associations, which is subsequently used to learn global node embeddings. Furthermore, the final fused local and global node embeddings are decoded to evaluate the circRNA-disease associations using a bilinear decoder. The fivefold cross-validation results demonstrate that MVGNCDA outperforms existing methods across five public datasets. Moreover, case study also confirms that MVGNCDA is capable of efficiently identifying unknown circRNA-disease associations.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.