Gabriela Sampaio, Taylor Ismaili, Ali Torkamani, David G Breckenridge, Ashley Katana, David B Goldstein, Sunil Sahdeo
{"title":"The impact of TRPV4 pathogenic mutations on barrier integrity.","authors":"Gabriela Sampaio, Taylor Ismaili, Ali Torkamani, David G Breckenridge, Ashley Katana, David B Goldstein, Sunil Sahdeo","doi":"10.1093/hmg/ddaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic mutations in the Transient Receptor Potential Vanilloid 4 (TRPV4) gene cause two classes of rare autosomal dominant disorders: peripheral neuropathies and skeletal dysplasias. Although most TRPV4 pathogenic mutations increase ion flux, it remains unclear how different mutations in TRPV4 cause such distinct disease presentations. Through an in vitro cell impedance platform, we showed that TRPV4 overactivity leads to cell barrier disruption, while pharmacological or genetic inhibition of TRPV4 activity protects against barrier disruption. Unexpectedly, we find that mutations causing peripheral neuropathies and metatropic dysplasias are more likely to cause barrier disruption than mutations causing non-metatropic skeletal dysplasia presentations. Finally, we show that a novel TRPV4 inhibitor (ABS-0872) protects cell-barrier disruption and promotes recovery of barrier integrity after damage caused by TRPV4 mutations.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic mutations in the Transient Receptor Potential Vanilloid 4 (TRPV4) gene cause two classes of rare autosomal dominant disorders: peripheral neuropathies and skeletal dysplasias. Although most TRPV4 pathogenic mutations increase ion flux, it remains unclear how different mutations in TRPV4 cause such distinct disease presentations. Through an in vitro cell impedance platform, we showed that TRPV4 overactivity leads to cell barrier disruption, while pharmacological or genetic inhibition of TRPV4 activity protects against barrier disruption. Unexpectedly, we find that mutations causing peripheral neuropathies and metatropic dysplasias are more likely to cause barrier disruption than mutations causing non-metatropic skeletal dysplasia presentations. Finally, we show that a novel TRPV4 inhibitor (ABS-0872) protects cell-barrier disruption and promotes recovery of barrier integrity after damage caused by TRPV4 mutations.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.