Vanillic acid ameliorates collagen-induced arthritis by suppressing the inflammation response via inhibition of the MAPK and NF-κB signaling pathways.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Yu Zhou, Pengfei Li, Zhongwen Zhi, Rong Chen, Chenghai Li, Chunbing Zhang
{"title":"Vanillic acid ameliorates collagen-induced arthritis by suppressing the inflammation response via inhibition of the MAPK and NF-κB signaling pathways.","authors":"Yu Zhou, Pengfei Li, Zhongwen Zhi, Rong Chen, Chenghai Li, Chunbing Zhang","doi":"10.1007/s10787-025-01645-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the potential therapeutic effects and underlying mechanism of vanillic acid (VA) in the treatment of rheumatoid arthritis (RA).</p><p><strong>Methods: </strong>A collagen-induced arthritis (CIA) model was established in DBA/1 J mice. Methotrexate (MTX, 1 mg/kg/d) and VA (5 mg/kg/d, 10 mg/kg/d, 20 mg/kg/d) were then administered to investigate their therapeutic efficacy on RA in vivo. The body weight, joint score, and spleen index of the mice in different experimental groups were evaluated. Micro-CT was performed to detect joint destruction in the mice, and HE staining was utilized to observe the pathological conditions of their joints and spleens. Quantitative real-time PCR (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect inflammatory cytokines and chemokines. Changes in synovial tissue signaling pathways were detected using immunohistochemistry. For in vitro analysis, RAW 264.7 cells were pretreated with different concentrations of VA (25, 50, 100 μg/ml) and then treated with lipopolysaccharide (LPS), and changes in their signaling pathways were detected by western blot (WB).</p><p><strong>Results: </strong>VA improved the clinical symptoms and bone destruction of arthritis in CIA mice, reduced pathological damage to ankle synovial and spleen tissue, and inhibited polarization of macrophages to M1 in the synovial tissue as well. In addition, VA inhibited the expression of TNF-α, IL-6, IL-1β, MCP-1, and iNOS in CIA mice and in LPS-stimulated RAW264.7 cells and also inhibited the phosphorylation of p65, IκBα, ERK, JNK, and p38 MAPKs.</p><p><strong>Conclusions: </strong>VA can significantly improve the clinical symptoms of RA and exerts anti-inflammatory effects by inhibiting the activation of the NF-κB/MAPK pathway.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01645-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore the potential therapeutic effects and underlying mechanism of vanillic acid (VA) in the treatment of rheumatoid arthritis (RA).

Methods: A collagen-induced arthritis (CIA) model was established in DBA/1 J mice. Methotrexate (MTX, 1 mg/kg/d) and VA (5 mg/kg/d, 10 mg/kg/d, 20 mg/kg/d) were then administered to investigate their therapeutic efficacy on RA in vivo. The body weight, joint score, and spleen index of the mice in different experimental groups were evaluated. Micro-CT was performed to detect joint destruction in the mice, and HE staining was utilized to observe the pathological conditions of their joints and spleens. Quantitative real-time PCR (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect inflammatory cytokines and chemokines. Changes in synovial tissue signaling pathways were detected using immunohistochemistry. For in vitro analysis, RAW 264.7 cells were pretreated with different concentrations of VA (25, 50, 100 μg/ml) and then treated with lipopolysaccharide (LPS), and changes in their signaling pathways were detected by western blot (WB).

Results: VA improved the clinical symptoms and bone destruction of arthritis in CIA mice, reduced pathological damage to ankle synovial and spleen tissue, and inhibited polarization of macrophages to M1 in the synovial tissue as well. In addition, VA inhibited the expression of TNF-α, IL-6, IL-1β, MCP-1, and iNOS in CIA mice and in LPS-stimulated RAW264.7 cells and also inhibited the phosphorylation of p65, IκBα, ERK, JNK, and p38 MAPKs.

Conclusions: VA can significantly improve the clinical symptoms of RA and exerts anti-inflammatory effects by inhibiting the activation of the NF-κB/MAPK pathway.

香草酸通过抑制MAPK和NF-κB信号通路抑制炎症反应,改善胶原诱导的关节炎。
目的:探讨香草酸(VA)治疗类风湿关节炎(RA)的潜在疗效及其机制。方法:建立DBA/ 1j小鼠胶原性关节炎(CIA)模型。分别给予甲氨蝶呤(MTX, 1 mg/kg/d)和VA (5 mg/kg/d, 10 mg/kg/d, 20 mg/kg/d),观察其体内治疗RA的疗效。测定各实验组小鼠的体重、关节评分、脾脏指数。采用Micro-CT检测小鼠关节破坏情况,HE染色观察小鼠关节及脾脏病理情况。采用实时荧光定量PCR (qRT-PCR)和酶联免疫吸附法(ELISA)检测炎症因子和趋化因子。免疫组织化学检测滑膜组织信号通路的变化。体外分析,分别用不同浓度的VA(25、50、100 μg/ml)预处理RAW 264.7细胞,然后用脂多糖(LPS)处理,western blot检测其信号通路的变化。结果:VA改善CIA小鼠关节炎的临床症状和骨破坏,减轻踝关节滑膜和脾脏组织的病理损伤,抑制滑膜组织中巨噬细胞对M1的极化。此外,VA抑制了CIA小鼠和lps刺激的RAW264.7细胞中TNF-α、IL-6、IL-1β、MCP-1和iNOS的表达,也抑制了p65、i - κ b α、ERK、JNK和p38 MAPKs的磷酸化。结论:VA可显著改善RA临床症状,并通过抑制NF-κB/MAPK通路的激活发挥抗炎作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信