BvBZR1 improves parenchyma cell development and sucrose accumulation in sugar beet (Beta vulgaris L.) taproot.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1495161
Ningning Li, Wei Wang, Xiaotong Guo, Yaqing Sun, Guolong Li, Shaoying Zhang
{"title":"<i>BvBZR1</i> improves parenchyma cell development and sucrose accumulation in sugar beet (<i>Beta vulgaris</i> L.) taproot.","authors":"Ningning Li, Wei Wang, Xiaotong Guo, Yaqing Sun, Guolong Li, Shaoying Zhang","doi":"10.3389/fpls.2025.1495161","DOIUrl":null,"url":null,"abstract":"<p><p>BRASSINAZOLE-RESISTANT (BZR) transcription factors, key elements of brassinolide (BR) signal transduction, play an important role in regulating plant growth and development. However, little is known about the molecular regulatory mechanism of BZR in sugar beet taproot growth. In this study, <i>BvBZR1</i> expression was significantly induced by exogenous BR treatment. Transgenic sugar beet overexpressing <i>BvBZR1</i> exhibited a higher taproot diameter compared with the wild type, mainly due to a significant enhancement in the spacing between cambial rings by increasing the size and layers of parenchyma cells. <i>BvBZR1</i> regulated the expression of <i>BvCESA6</i>, <i>BvXTH33</i>, <i>BvFAD3</i>, and <i>BvCEL1</i> and enhanced cell wall metabolism to promote sugar beet taproot growth in parenchyma cells and the development of each cambium ring. In addition, <i>BvBZR1</i> overexpression significantly increased the accumulation of sucrose and soluble sugars in the taproot, which was attributed to its ability to regulate the expression of <i>BvSPS</i> and <i>BvINV</i> and improve the activity of BvSPS, BvSS-S, BvSS-C, and BvINV enzymes in each cambium ring and parenchyma cell in the sugar beet taproot. These results suggest that <i>BvBZR1</i> can regulate the expression of genes related to cell wall and sucrose metabolism, improve corresponding enzyme activity, and promote the development of each cambium ring and parenchyma cell, thereby promoting the growth and development of sugar beet taproots.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1495161"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1495161","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BRASSINAZOLE-RESISTANT (BZR) transcription factors, key elements of brassinolide (BR) signal transduction, play an important role in regulating plant growth and development. However, little is known about the molecular regulatory mechanism of BZR in sugar beet taproot growth. In this study, BvBZR1 expression was significantly induced by exogenous BR treatment. Transgenic sugar beet overexpressing BvBZR1 exhibited a higher taproot diameter compared with the wild type, mainly due to a significant enhancement in the spacing between cambial rings by increasing the size and layers of parenchyma cells. BvBZR1 regulated the expression of BvCESA6, BvXTH33, BvFAD3, and BvCEL1 and enhanced cell wall metabolism to promote sugar beet taproot growth in parenchyma cells and the development of each cambium ring. In addition, BvBZR1 overexpression significantly increased the accumulation of sucrose and soluble sugars in the taproot, which was attributed to its ability to regulate the expression of BvSPS and BvINV and improve the activity of BvSPS, BvSS-S, BvSS-C, and BvINV enzymes in each cambium ring and parenchyma cell in the sugar beet taproot. These results suggest that BvBZR1 can regulate the expression of genes related to cell wall and sucrose metabolism, improve corresponding enzyme activity, and promote the development of each cambium ring and parenchyma cell, thereby promoting the growth and development of sugar beet taproots.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信