Haixu Liu, Yan Zhang, Lili Zhang, Yingjie Liu, Yufei Chen, Ying Shi
{"title":"Nano-selenium strengthens potato resistance to potato scab induced by <i>Streptomyces</i> spp., increases yield, and elevates tuber quality by influencing rhizosphere microbiomes.","authors":"Haixu Liu, Yan Zhang, Lili Zhang, Yingjie Liu, Yufei Chen, Ying Shi","doi":"10.3389/fpls.2025.1523174","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The application of selenium could directly or indirectly modulate the activity of antioxidant enzymes in crops, thereby mitigating the detrimental effects of abiotic and biotic stresses on crop health. However, there are few studies on the effects of nano-selenium fertilizer on potato scab caused by <i>Streptomyces</i> spp., potato yield and tuber quality.</p><p><strong>Methods: </strong>We aimed to elucidate the impact of nano-selenium fertilizer on potato disease resistance, yield, tuber quality, antioxidant enzyme activity and rhizosphere soil bacterial communities, and to determine the optimal frequency and growth stages of nano-selenium fertilizer spraying.</p><p><strong>Results and discussion: </strong>The application of nano-selenium fertilizer twice during the seedling stage significantly reduced the disease index of potato scab, enhanced potato yield, tuber quality (dry matter, Vitamin C, crude protein, and selenium content), and antioxidant enzyme activity (glutathione peroxidase, peroxidase, polyphenol oxidase, superoxide dismutase, and phenylalanine ammonia lyase). The diversity of the rhizosphere bacterial community of potatoes subjected to selenium fertilizer spraying at the seedling stage increased significantly, and concurrently, the symbiotic network of rhizosphere bacterial microbiome grew more complex. Beneficial microorganisms such as bacteria of the genus <i>Bacillus</i> were enriched in the rhizosphere soil. The current study provided theoretical support for the exploration of a potato selenium-enriched technology system and supplies scientific guidance for the utilization of nano-selenium.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1523174"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1523174","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The application of selenium could directly or indirectly modulate the activity of antioxidant enzymes in crops, thereby mitigating the detrimental effects of abiotic and biotic stresses on crop health. However, there are few studies on the effects of nano-selenium fertilizer on potato scab caused by Streptomyces spp., potato yield and tuber quality.
Methods: We aimed to elucidate the impact of nano-selenium fertilizer on potato disease resistance, yield, tuber quality, antioxidant enzyme activity and rhizosphere soil bacterial communities, and to determine the optimal frequency and growth stages of nano-selenium fertilizer spraying.
Results and discussion: The application of nano-selenium fertilizer twice during the seedling stage significantly reduced the disease index of potato scab, enhanced potato yield, tuber quality (dry matter, Vitamin C, crude protein, and selenium content), and antioxidant enzyme activity (glutathione peroxidase, peroxidase, polyphenol oxidase, superoxide dismutase, and phenylalanine ammonia lyase). The diversity of the rhizosphere bacterial community of potatoes subjected to selenium fertilizer spraying at the seedling stage increased significantly, and concurrently, the symbiotic network of rhizosphere bacterial microbiome grew more complex. Beneficial microorganisms such as bacteria of the genus Bacillus were enriched in the rhizosphere soil. The current study provided theoretical support for the exploration of a potato selenium-enriched technology system and supplies scientific guidance for the utilization of nano-selenium.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.