Evaluating sowing uniformity in hybrid rice using image processing and the OEW-YOLOv8n network.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1473153
Zehua Li, Yihui Pan, Xu Ma, Yongjun Lin, Xicheng Wang, Hongwei Li
{"title":"Evaluating sowing uniformity in hybrid rice using image processing and the OEW-YOLOv8n network.","authors":"Zehua Li, Yihui Pan, Xu Ma, Yongjun Lin, Xicheng Wang, Hongwei Li","doi":"10.3389/fpls.2025.1473153","DOIUrl":null,"url":null,"abstract":"<p><p>Sowing uniformity is an important evaluation indicator of mechanical sowing quality. In order to achieve accurate evaluation of sowing uniformity in hybrid rice mechanical sowing, this study takes the seeds in a seedling tray of hybrid rice blanket-seedling nursing as the research object and proposes a method for evaluating sowing uniformity by combining image processing methods and the ODConv_C2f-ECA-WIoU-YOLOv8n (OEW-YOLOv8n) network. Firstly, image processing methods are used to segment seed image and obtain seed grids. Next, an improved model named OEW-YOLOv8n based on YOLOv8n is proposed to identify the number of seeds in a unit seed grid. The improved strategies include the following: (1) Replacing the Conv module in the Bottleneck of C2f modules with the Omni-Dimensional Dynamic Convolution (ODConv) module, where C2f modules are located at the connection between the Backbone and Neck. This improvement can enhance the feature extraction ability of the Backbone network, as the new modules can fully utilize the information of all dimensions of the convolutional kernel. (2) An Efficient Channel Attention (ECA) module is added to the Neck for improving the network's capability to extract deep semantic feature information of the detection target. (3) In the Bbox module of the prediction head, the Complete Intersection over Union (CIoU) loss function is replaced by the Weighted Intersection over Union version 3 (WIoUv3) loss function to improve the convergence speed of the bounding box loss function and reduce the convergence value of the loss function. The results show that the mean average precision (mAP) of the OEW-YOLOv8n network reaches 98.6%. Compared to the original model, the mAP improved by 2.5%. Compared to the advanced object detection algorithms such as Faster-RCNN, SSD, YOLOv4, YOLOv5s YOLOv7-tiny, and YOLOv10s, the mAP of the new network increased by 5.2%, 7.8%, 4.9%, 2.8% 2.9%, and 3.3%, respectively. Finally, the actual evaluation experiment showed that the test error is from -2.43% to 2.92%, indicating that the improved network demonstrates excellent estimation accuracy. The research results can provide support for the mechanized sowing quality detection of hybrid rice and the intelligent research of rice seeder.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1473153"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1473153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sowing uniformity is an important evaluation indicator of mechanical sowing quality. In order to achieve accurate evaluation of sowing uniformity in hybrid rice mechanical sowing, this study takes the seeds in a seedling tray of hybrid rice blanket-seedling nursing as the research object and proposes a method for evaluating sowing uniformity by combining image processing methods and the ODConv_C2f-ECA-WIoU-YOLOv8n (OEW-YOLOv8n) network. Firstly, image processing methods are used to segment seed image and obtain seed grids. Next, an improved model named OEW-YOLOv8n based on YOLOv8n is proposed to identify the number of seeds in a unit seed grid. The improved strategies include the following: (1) Replacing the Conv module in the Bottleneck of C2f modules with the Omni-Dimensional Dynamic Convolution (ODConv) module, where C2f modules are located at the connection between the Backbone and Neck. This improvement can enhance the feature extraction ability of the Backbone network, as the new modules can fully utilize the information of all dimensions of the convolutional kernel. (2) An Efficient Channel Attention (ECA) module is added to the Neck for improving the network's capability to extract deep semantic feature information of the detection target. (3) In the Bbox module of the prediction head, the Complete Intersection over Union (CIoU) loss function is replaced by the Weighted Intersection over Union version 3 (WIoUv3) loss function to improve the convergence speed of the bounding box loss function and reduce the convergence value of the loss function. The results show that the mean average precision (mAP) of the OEW-YOLOv8n network reaches 98.6%. Compared to the original model, the mAP improved by 2.5%. Compared to the advanced object detection algorithms such as Faster-RCNN, SSD, YOLOv4, YOLOv5s YOLOv7-tiny, and YOLOv10s, the mAP of the new network increased by 5.2%, 7.8%, 4.9%, 2.8% 2.9%, and 3.3%, respectively. Finally, the actual evaluation experiment showed that the test error is from -2.43% to 2.92%, indicating that the improved network demonstrates excellent estimation accuracy. The research results can provide support for the mechanized sowing quality detection of hybrid rice and the intelligent research of rice seeder.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信