Comparative analysis of waterlogging and drought stress regulatory networks in barley (Hordeum vulgare).

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Bahman Panahi
{"title":"Comparative analysis of waterlogging and drought stress regulatory networks in barley (<i>Hordeum vulgare</i>).","authors":"Bahman Panahi","doi":"10.1071/FP24051","DOIUrl":null,"url":null,"abstract":"<p><p>We applied a systems biology approach to gain a deep insight into the regulatory mechanisms of barley (Hordeum vulgare ) under drought and waterlogging stress conditions. To identify informative models related to stress conditions, we constructed meta-analysis and two distinct weighted gene co-expression networks. We then performed module trait association analyses. Additionally, we conducted functional enrichment analysis of significant modules to shed light on the biological performance of underlying genes in the two contrasting stresses. In the next step, we inferred the gene regulatory networks between top hub genes of significant modules, kinases, and transcription factors (TFs) using a machine learning algorithm. Our results showed that at power=10, the scale-free topology fitting index (R2) was higher than 0.8 and the connectivity mean became stable. We identified 31 co-expressed gene modules in barley, with 13 and 14 modules demonstrating significant associations with drought and waterlogging stress, respectively. Functional enrichment analysis indicated that these stress-responsive modules are involved in critical processes, including ADP-rybosylation factors (ARF) protein signal transduction, ethylene-induced autophagy, and phosphoric ester hydrolase activity. Specific TFs and kinases, such as C2C2-GATA, HB-BELL, and MADS-MIKC, were identified as key regulators under these stress conditions. Furthermore, certain TFs and kinases established unique connections with hub genes in response to waterlogging and drought conditions. These findings enhance our understanding of the molecular networks that modulate barley's response to drought and waterlogging stresses, offering insights into the regulatory mechanisms essential for stress adaptation.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We applied a systems biology approach to gain a deep insight into the regulatory mechanisms of barley (Hordeum vulgare ) under drought and waterlogging stress conditions. To identify informative models related to stress conditions, we constructed meta-analysis and two distinct weighted gene co-expression networks. We then performed module trait association analyses. Additionally, we conducted functional enrichment analysis of significant modules to shed light on the biological performance of underlying genes in the two contrasting stresses. In the next step, we inferred the gene regulatory networks between top hub genes of significant modules, kinases, and transcription factors (TFs) using a machine learning algorithm. Our results showed that at power=10, the scale-free topology fitting index (R2) was higher than 0.8 and the connectivity mean became stable. We identified 31 co-expressed gene modules in barley, with 13 and 14 modules demonstrating significant associations with drought and waterlogging stress, respectively. Functional enrichment analysis indicated that these stress-responsive modules are involved in critical processes, including ADP-rybosylation factors (ARF) protein signal transduction, ethylene-induced autophagy, and phosphoric ester hydrolase activity. Specific TFs and kinases, such as C2C2-GATA, HB-BELL, and MADS-MIKC, were identified as key regulators under these stress conditions. Furthermore, certain TFs and kinases established unique connections with hub genes in response to waterlogging and drought conditions. These findings enhance our understanding of the molecular networks that modulate barley's response to drought and waterlogging stresses, offering insights into the regulatory mechanisms essential for stress adaptation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信