{"title":"Dual targeting carbonic anhydrase inhibitors as promising therapeutic approach: a structural overview.","authors":"Katia D'Ambrosio, Anna Di Fiore, Emma Langella","doi":"10.3389/fmolb.2025.1511281","DOIUrl":null,"url":null,"abstract":"<p><p>The dual-target inhibitor strategy is an evolving approach that holds great potential for treating complex diseases by addressing their multifactorial nature. It can enhance therapeutic outcomes, reduce side effects and avoid the emergence of drug resistance, particularly in conditions like cancer, inflammation and neurological disorders, where multiple pathways contribute to disease progression. Identifying suitable targets for a dual inhibitor approach requires a deep understanding of disease biology, knowledge of critical pathways, and selection of complementary or synergistic targets. Human carbonic anhydrases (hCAs) have been recognized as suitable drug targets for this therapeutic approach. These enzymes play a key role in maintaining pH balance, ion transport, and fluid regulation across various tissues and organs and their dysregulation has been associated to a variety of human pathologies. Consequently, the inhibition of hCAs combined to the possibility to modulate the activity of a second molecular target represents a promising way for developing more effective drugs. In this mini-review, we aim to present an overview of the most significant structural results related to the development of novel therapeutics employing hCA inhibitors as dual-targeting compounds for the treatment of complex diseases.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1511281"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1511281","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dual-target inhibitor strategy is an evolving approach that holds great potential for treating complex diseases by addressing their multifactorial nature. It can enhance therapeutic outcomes, reduce side effects and avoid the emergence of drug resistance, particularly in conditions like cancer, inflammation and neurological disorders, where multiple pathways contribute to disease progression. Identifying suitable targets for a dual inhibitor approach requires a deep understanding of disease biology, knowledge of critical pathways, and selection of complementary or synergistic targets. Human carbonic anhydrases (hCAs) have been recognized as suitable drug targets for this therapeutic approach. These enzymes play a key role in maintaining pH balance, ion transport, and fluid regulation across various tissues and organs and their dysregulation has been associated to a variety of human pathologies. Consequently, the inhibition of hCAs combined to the possibility to modulate the activity of a second molecular target represents a promising way for developing more effective drugs. In this mini-review, we aim to present an overview of the most significant structural results related to the development of novel therapeutics employing hCA inhibitors as dual-targeting compounds for the treatment of complex diseases.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.