Gian Domenico Pinna, Elena Robbi, Maria Teresa La Rovere, Roberto Maestri
{"title":"Heart rate response to transient hypoxia in patients with heart failure and Cheyne-Stokes respiration.","authors":"Gian Domenico Pinna, Elena Robbi, Maria Teresa La Rovere, Roberto Maestri","doi":"10.1113/EP092304","DOIUrl":null,"url":null,"abstract":"<p><p>Cheyne-Stokes respiration (CSR), a rhythmic rise and fall in ventilation often experienced by patients with heart failure during sleep, is typically accompanied by an oscillation in heart rate (HR) at the same frequency. The mechanisms responsible for this oscillation are still debated. In this study, we used the experimental model of the transient hypoxia test (i.e., a laboratory test that mimics the transient nature of the cyclic desaturations that occur during hyperpnoeic phases of CSR) to assess accurately the temporal relationship between the HR response to transient hypoxia and the tidal volume response in six heart failure patients. The same relationship was assessed during CSR using polysomnographic signals. We hypothesized that this relationship would provide important insights into the key mechanisms contributing to the HR response. During transient hypoxia, HR started to increase around the onset of tidal volume increase but continued to increase after the peak of the latter had been reached. The time delay between the two peaks (HR vs. tidal volume) was 7.9 ± 4.8 s. The same delay during hyperpnoeic phases of CSR was 1.0 ± 0.9 s. In addition, the increases in lung volume were much greater than those found in the laboratory tests. Based on the known dynamics of vagal and sympathetic control of HR, we speculate that the HR response to transient hypoxia might be attributable predominantly to the sympathetically mediated tachycardic effect of the increased central inspiratory drive, whereas the fast, vagally mediated pulmonary inflation reflex might be the predominant mechanism during CSR.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cheyne-Stokes respiration (CSR), a rhythmic rise and fall in ventilation often experienced by patients with heart failure during sleep, is typically accompanied by an oscillation in heart rate (HR) at the same frequency. The mechanisms responsible for this oscillation are still debated. In this study, we used the experimental model of the transient hypoxia test (i.e., a laboratory test that mimics the transient nature of the cyclic desaturations that occur during hyperpnoeic phases of CSR) to assess accurately the temporal relationship between the HR response to transient hypoxia and the tidal volume response in six heart failure patients. The same relationship was assessed during CSR using polysomnographic signals. We hypothesized that this relationship would provide important insights into the key mechanisms contributing to the HR response. During transient hypoxia, HR started to increase around the onset of tidal volume increase but continued to increase after the peak of the latter had been reached. The time delay between the two peaks (HR vs. tidal volume) was 7.9 ± 4.8 s. The same delay during hyperpnoeic phases of CSR was 1.0 ± 0.9 s. In addition, the increases in lung volume were much greater than those found in the laboratory tests. Based on the known dynamics of vagal and sympathetic control of HR, we speculate that the HR response to transient hypoxia might be attributable predominantly to the sympathetically mediated tachycardic effect of the increased central inspiratory drive, whereas the fast, vagally mediated pulmonary inflation reflex might be the predominant mechanism during CSR.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.