Multimodal deep learning: tumor and visceral fat impact on colorectal cancer occult peritoneal metastasis.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Shidi Miao, Mengzhuo Sun, Beibei Zhang, Yuyang Jiang, Qifan Xuan, Guopeng Wang, Mingxuan Wang, Yuxin Jiang, Qiujun Wang, Zengyao Liu, Xuemei Ding, Ruitao Wang
{"title":"Multimodal deep learning: tumor and visceral fat impact on colorectal cancer occult peritoneal metastasis.","authors":"Shidi Miao, Mengzhuo Sun, Beibei Zhang, Yuyang Jiang, Qifan Xuan, Guopeng Wang, Mingxuan Wang, Yuxin Jiang, Qiujun Wang, Zengyao Liu, Xuemei Ding, Ruitao Wang","doi":"10.1007/s00330-025-11450-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study proposes a multimodal deep learning (DL) approach to investigate the impact of tumors and visceral fat on occult peritoneal metastasis in colorectal cancer (CRC) patients.</p><p><strong>Methods: </strong>We developed a DL model named Multi-scale Feature Fusion Network (MSFF-Net) based on ResNet18, which extracted features of tumors and visceral fat from the longest diameter tumor section and the third lumbar vertebra level (L3) in preoperative CT scans of CRC patients. Logistic regression analysis was applied to patients' clinical data that integrated with DL features. A random forest (RF) classifier was established to evaluate the MSFF-Net's performance on internal and external test sets and compare it with radiologists' performance.</p><p><strong>Results: </strong>The model incorporating fat features outperformed the single tumor modality in the internal test set. Combining clinical information with DL provided the best diagnostic performance for predicting peritoneal metastasis in CRC patients. The AUCs were 0.941 (95% CI: [0.891, 0.986], p = 0.03) for the internal test set and 0.911 (95% CI: [0.857, 0.971], p = 0.013) for the external test set. CRC patients with peritoneal metastasis had a higher visceral adipose tissue index (VATI) compared to those without. Maximum tumor diameter and VATI were identified as independent prognostic factors for peritoneal metastasis. Grad-CAM decision regions corresponded with the independent prognostic factors identified by logistic regression analysis.</p><p><strong>Conclusion: </strong>The study confirms the network features of tumors and visceral fat significantly enhance predictive performance for peritoneal metastasis in CRC. Visceral fat is a meaningful imaging biomarker for peritoneal metastasis's early detection in CRC patients.</p><p><strong>Key points: </strong>Question Current research on predicting colorectal cancer with peritoneal metastasis mainly focuses on single-modality analysis, while studies based on multimodal imaging information are relatively scarce. Findings The Multi-scale Feature Fusion Network, constructed based on ResNet18, can utilize CT images of tumors and visceral fat to detect occult peritoneal metastasis in colorectal cancer. Clinical relevance This study identified independent prognostic factors for colorectal cancer peritoneal metastasis and combines them with tumor and visceral fat network features, aiding early diagnosis and accurate prognostic assessment.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11450-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study proposes a multimodal deep learning (DL) approach to investigate the impact of tumors and visceral fat on occult peritoneal metastasis in colorectal cancer (CRC) patients.

Methods: We developed a DL model named Multi-scale Feature Fusion Network (MSFF-Net) based on ResNet18, which extracted features of tumors and visceral fat from the longest diameter tumor section and the third lumbar vertebra level (L3) in preoperative CT scans of CRC patients. Logistic regression analysis was applied to patients' clinical data that integrated with DL features. A random forest (RF) classifier was established to evaluate the MSFF-Net's performance on internal and external test sets and compare it with radiologists' performance.

Results: The model incorporating fat features outperformed the single tumor modality in the internal test set. Combining clinical information with DL provided the best diagnostic performance for predicting peritoneal metastasis in CRC patients. The AUCs were 0.941 (95% CI: [0.891, 0.986], p = 0.03) for the internal test set and 0.911 (95% CI: [0.857, 0.971], p = 0.013) for the external test set. CRC patients with peritoneal metastasis had a higher visceral adipose tissue index (VATI) compared to those without. Maximum tumor diameter and VATI were identified as independent prognostic factors for peritoneal metastasis. Grad-CAM decision regions corresponded with the independent prognostic factors identified by logistic regression analysis.

Conclusion: The study confirms the network features of tumors and visceral fat significantly enhance predictive performance for peritoneal metastasis in CRC. Visceral fat is a meaningful imaging biomarker for peritoneal metastasis's early detection in CRC patients.

Key points: Question Current research on predicting colorectal cancer with peritoneal metastasis mainly focuses on single-modality analysis, while studies based on multimodal imaging information are relatively scarce. Findings The Multi-scale Feature Fusion Network, constructed based on ResNet18, can utilize CT images of tumors and visceral fat to detect occult peritoneal metastasis in colorectal cancer. Clinical relevance This study identified independent prognostic factors for colorectal cancer peritoneal metastasis and combines them with tumor and visceral fat network features, aiding early diagnosis and accurate prognostic assessment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信