Metformin ameliorates gestational diabetes mellitus via inhibiting ferroptosis of trophoblasts through the Nrf2/HO-1 signaling pathway.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-02-01 Epub Date: 2025-02-19 DOI:10.1080/10715762.2025.2468737
Lingya Fang, Sha Lu, Liuyuan Fang, Junxin Yu, Nisile Kakongma, Wensheng Hu
{"title":"Metformin ameliorates gestational diabetes mellitus via inhibiting ferroptosis of trophoblasts through the Nrf2/HO-1 signaling pathway.","authors":"Lingya Fang, Sha Lu, Liuyuan Fang, Junxin Yu, Nisile Kakongma, Wensheng Hu","doi":"10.1080/10715762.2025.2468737","DOIUrl":null,"url":null,"abstract":"<p><p>Both mothers and infants experience oxidative stress due to gestational diabetes mellitus (GDM), which is strongly associated with adverse pregnancy outcomes. Ferroptosis, a novel form of programmed cell death characterized by iron-dependent lipid peroxidation, is believed to play a critical role in the pathogenesis and progression of GDM. Metformin (MET) has shown potential in alleviating oxidative stress; however, research on its specific mechanisms of action in GDM remains limited. We collected placental tissues from GDM patients and healthy controls and established an <i>in vitro</i> GDM cell model. We measured markers of ferroptosis including malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) activity. Additionally, we evaluated reactive oxygen species (ROS) levels, apoptosis, cell viability, and migration in the cell model. Our findings revealed significant changes in the GDM group compared to controls, including increased MDA and GSSG levels, decreased GSH levels, and reduced expression of GPX4 protein in the GDM placenta. High-glucose (HG) conditions were shown to reduce trophoblast cell viability and migration, accompanied by elevated ROS and MDA levels, as well as reduced expression of GSH, GPX4, Nrf2, and HO-1 proteins. Importantly, treatment with MET reversed these effects, similar to the action of deferoxamine mesylate (DFOM), a known ferroptosis inhibitor. These results confirm the occurrence of ferroptosis in the placentas of GDM patients and demonstrate that MET mitigates high-glucose-induced ferroptosis in trophoblasts through the Nrf2/HO-1 signaling pathway. This study provides novel insights into the protective mechanisms of MET, offering potential therapeutic strategies for GDM. management.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"190-203"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2468737","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Both mothers and infants experience oxidative stress due to gestational diabetes mellitus (GDM), which is strongly associated with adverse pregnancy outcomes. Ferroptosis, a novel form of programmed cell death characterized by iron-dependent lipid peroxidation, is believed to play a critical role in the pathogenesis and progression of GDM. Metformin (MET) has shown potential in alleviating oxidative stress; however, research on its specific mechanisms of action in GDM remains limited. We collected placental tissues from GDM patients and healthy controls and established an in vitro GDM cell model. We measured markers of ferroptosis including malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) activity. Additionally, we evaluated reactive oxygen species (ROS) levels, apoptosis, cell viability, and migration in the cell model. Our findings revealed significant changes in the GDM group compared to controls, including increased MDA and GSSG levels, decreased GSH levels, and reduced expression of GPX4 protein in the GDM placenta. High-glucose (HG) conditions were shown to reduce trophoblast cell viability and migration, accompanied by elevated ROS and MDA levels, as well as reduced expression of GSH, GPX4, Nrf2, and HO-1 proteins. Importantly, treatment with MET reversed these effects, similar to the action of deferoxamine mesylate (DFOM), a known ferroptosis inhibitor. These results confirm the occurrence of ferroptosis in the placentas of GDM patients and demonstrate that MET mitigates high-glucose-induced ferroptosis in trophoblasts through the Nrf2/HO-1 signaling pathway. This study provides novel insights into the protective mechanisms of MET, offering potential therapeutic strategies for GDM. management.

二甲双胍通过Nrf2/HO-1信号通路抑制滋养细胞铁下垂,改善妊娠期糖尿病。
由于妊娠期糖尿病(GDM),母亲和婴儿都会经历氧化应激,这与不良妊娠结局密切相关。铁凋亡是一种以铁依赖性脂质过氧化为特征的程序性细胞死亡的新形式,被认为在GDM的发病和进展中起关键作用。二甲双胍(MET)已显示出减轻氧化应激的潜力;然而,对其在GDM中的具体作用机制的研究仍然有限。我们收集GDM患者和健康对照者的胎盘组织,建立体外GDM细胞模型。我们测量了铁下垂的标志物,包括丙二醛(MDA)、谷胱甘肽(GSH)和谷胱甘肽过氧化物酶4 (GPX4)活性。此外,我们在细胞模型中评估了活性氧(ROS)水平、细胞凋亡、细胞活力和迁移。我们的研究结果显示,与对照组相比,GDM组发生了显著变化,包括MDA和GSSG水平升高,GSH水平降低,GDM胎盘中GPX4蛋白表达降低。高糖(HG)条件显示滋养层细胞活力和迁移降低,伴随着ROS和MDA水平升高,以及GSH、GPX4、Nrf2和HO-1蛋白表达降低。重要的是,MET治疗逆转了这些作用,类似于甲磺酸去铁胺(DFOM)的作用,一种已知的铁下垂抑制剂。这些结果证实了GDM患者胎盘中铁下垂的发生,并证明MET通过Nrf2/HO-1信号通路减轻高糖诱导的滋养细胞铁下垂。这项研究为MET的保护机制提供了新的见解,为GDM的治疗提供了潜在的策略。管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信