{"title":"An attenuated African swine fever virus expressing the E2 glycoprotein of classical swine fever virus protects pigs against challenge of both viruses.","authors":"Jiwen Zhang, Fang Li, Weiye Chen, Yongfeng Li, Zhenjiang Zhang, Ronghong Hua, Renqiang Liu, Yuanmao Zhu, Encheng Sun, Huaji Qiu, Zhigao Bu, Dongming Zhao","doi":"10.1080/22221751.2025.2469636","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever (ASF) and classical swine fever (CSF) are highly contagious diseases with high morbidity and mortality rates resulting in an enormous impact on the global pig industry. A bivalent vaccine that simultaneously protects against both ASF and CSF is highly desirable. We previously developed a seven-gene-deleted African swine fever virus (ASFV) attenuated vaccine candidate (HLJ/18-7GD) that provides complete protection against homologous strains. Herein, we constructed a recombinant virus HLJ/18-7GD-E2 by inserting the classical swine fever virus (CSFV) E2 gene into the HLJ/18-7GD via homologous recombination. After continuous <i>in vitro</i> passaging, Western blotting analysis showed that the E2 gene was expressed and stably maintained within the ASFV genome. Next, the immunogenicity and protective efficacy of the recombinant HLJ/18-7GD-E2 virus was evaluated in pigs. The results revealed that a single dose of 10<sup>6</sup> TCID<sub>50</sub> of HLJ/18-7GD-E2 induced an efficient immune response and provided complete protection against lethal challenges with ASFV or CSFV. These results demonstrate that recombinant ASFV expressing the CSFV E2 protein has potential as a bivalent live attenuated vaccine, providing solid protection against ASFV and CSFV infection in pigs.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2469636"},"PeriodicalIF":8.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2025.2469636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
African swine fever (ASF) and classical swine fever (CSF) are highly contagious diseases with high morbidity and mortality rates resulting in an enormous impact on the global pig industry. A bivalent vaccine that simultaneously protects against both ASF and CSF is highly desirable. We previously developed a seven-gene-deleted African swine fever virus (ASFV) attenuated vaccine candidate (HLJ/18-7GD) that provides complete protection against homologous strains. Herein, we constructed a recombinant virus HLJ/18-7GD-E2 by inserting the classical swine fever virus (CSFV) E2 gene into the HLJ/18-7GD via homologous recombination. After continuous in vitro passaging, Western blotting analysis showed that the E2 gene was expressed and stably maintained within the ASFV genome. Next, the immunogenicity and protective efficacy of the recombinant HLJ/18-7GD-E2 virus was evaluated in pigs. The results revealed that a single dose of 106 TCID50 of HLJ/18-7GD-E2 induced an efficient immune response and provided complete protection against lethal challenges with ASFV or CSFV. These results demonstrate that recombinant ASFV expressing the CSFV E2 protein has potential as a bivalent live attenuated vaccine, providing solid protection against ASFV and CSFV infection in pigs.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.