{"title":"Assessment of antibiofilm and quorum quenching potencies of environmental bacteria in controlling biofilm of food spoilage bacteria.","authors":"Christine Charen, Diana Elizabeth Waturangi","doi":"10.1186/s13104-025-07141-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This research aims to investigate anti-quorum sensing and antibiofilm activity of supernatants from environmental bacteria against the biofilm formed by food spoilage bacteria such as Bacillus cereus, Bacillus subtilis, and Shewanella putrefaciens.</p><p><strong>Results: </strong>Supernatants were generated from ten environmental bacteria isolates (A19, A30, A32, A40, B10, B212, C1, J70, J73, and T152), with four isolates (A19, A32, A40, B212) showed anti-quorum sensing activity against Chromobacterium violaceum wild type as indicator bacteria. In inhibition and destruction assays, the highest percentage inhibition of 81.42% and 81.33% by B10 and B212, respectively, against B. cereus and J73 against B. subtilis was recorded at 87.45%. While A32, T152, and C1 performed the highest destruction against B. cereus, B. subtilis, and S. putrefaciens with percentages of 45.4%, 83.81%, 74.81%, respectively. Observation using light microscopy and Scanning Electron Microscopy (SEM) revealed C, O, Na, Mg, Al, Si, K, and Ca elements were detected which might play role in biofilm formation. Based on 16s rRNA sequencing, the environmental bacteria isolates were identified as Enterobacter, Acinetobacter, Acinetobacter, Pantoea genera, C1, and T152. These results imply that these bacteria have destructing and inhibiting potential against Bacillus cereus, Bacillus subtillis, Shewanella putrefaciens.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"71"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07141-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This research aims to investigate anti-quorum sensing and antibiofilm activity of supernatants from environmental bacteria against the biofilm formed by food spoilage bacteria such as Bacillus cereus, Bacillus subtilis, and Shewanella putrefaciens.
Results: Supernatants were generated from ten environmental bacteria isolates (A19, A30, A32, A40, B10, B212, C1, J70, J73, and T152), with four isolates (A19, A32, A40, B212) showed anti-quorum sensing activity against Chromobacterium violaceum wild type as indicator bacteria. In inhibition and destruction assays, the highest percentage inhibition of 81.42% and 81.33% by B10 and B212, respectively, against B. cereus and J73 against B. subtilis was recorded at 87.45%. While A32, T152, and C1 performed the highest destruction against B. cereus, B. subtilis, and S. putrefaciens with percentages of 45.4%, 83.81%, 74.81%, respectively. Observation using light microscopy and Scanning Electron Microscopy (SEM) revealed C, O, Na, Mg, Al, Si, K, and Ca elements were detected which might play role in biofilm formation. Based on 16s rRNA sequencing, the environmental bacteria isolates were identified as Enterobacter, Acinetobacter, Acinetobacter, Pantoea genera, C1, and T152. These results imply that these bacteria have destructing and inhibiting potential against Bacillus cereus, Bacillus subtillis, Shewanella putrefaciens.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.