Revitalizing maize downy mildew management: harnessing new-generation fungicides and host plant resistance.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
G Jadesha, M S Kitturmath, P Mahadevu, Chikkappa G Karjagi, Zahoor Ahmed Dar, H C Lohithaswa, D Deepak
{"title":"Revitalizing maize downy mildew management: harnessing new-generation fungicides and host plant resistance.","authors":"G Jadesha, M S Kitturmath, P Mahadevu, Chikkappa G Karjagi, Zahoor Ahmed Dar, H C Lohithaswa, D Deepak","doi":"10.1186/s12870-024-05882-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maize Downy Mildew (MDM) is a devastating disease in the humid sub-tropical/tropical regions of Asia. In this study, the prevalence of MDM during the rainy Kharif seasons of south Karnataka state (India) ranged between 6.8% (2018) and 19.1% (2022). The research evaluated new fungicidal treatments and assessed the genetic tolerance of maize lines to develop robust management strategies that enhance maize productivity and stability.</p><p><strong>Results: </strong>During the Kharif seasons of 2021 and 2022, we conducted field trials to evaluate the effectiveness of six different fungicides, both individually and in combination. The most effective approach combined seed treatment with Metalaxyl (4%) and Mancozeb (64%) WP, followed by a foliar spray of Azoxystrobin (18.2%) and Difenoconazole (11.4%) SC. This treatment reduced MDM incidence by 97.6% and increased maize yield up to 85.6 quintals per hectare, with a benefit-cost ratio of 2.2. Additionally, screening of 317 maize inbred lines in Kharif 2019 identified 22 lines with stable MDM resistance over nine consecutive Rabi and Kharif seasons, indicating their potential for sustained resistance. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed significant increases in eighteen phenolic compounds and fifteen flavonoid compounds in resistant maize genotypes. Specifically, resistant genotypes exhibited elevated levels of salicylic acid (4.2 to 9.2-fold), p-Coumaric acid (3.7 to 4.8-fold), o-Coumaric acid (4.5 to 7.4-fold), Caffeic acid (2.4 to 3.1-fold), and Ferulic acid (2.3 to 2.8-fold). Flavonoid levels also increased, with Naringenin ranging from 34.4 µg/g in African Tall to 130 µg/g in MAI 224, Catechin from 22.9 µg/g in African Tall to 124.4 µg/g in MAI 10, and Epicatechin from 1.3 µg/g in African Tall to 8.2 µg/g in MAI 10. These heightened levels contribute to a robust chemical defence mechanism against Peronosclerospora sorghi.</p><p><strong>Conclusions: </strong>This study provides crucial insights into managing MDM through host plant resistance and fungicidal treatments. We identified 22 resistant inbred lines as valuable genetic resources for breeding MDM-resistant maize hybrids. Enhanced levels of specific phenolic and flavonoid compounds in these resistant genotypes suggest a robust chemical defence mechanism, essential for developing resilient crops. Our findings offer practical recommendations for improving maize production and ensuring crop security in MDM-affected regions. Integrating these resistant maize lines and effective fungicidal treatments can significantly advance sustainable agricultural practices, contributing to crop resilience and food security in areas prone to MDM.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"211"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05882-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Maize Downy Mildew (MDM) is a devastating disease in the humid sub-tropical/tropical regions of Asia. In this study, the prevalence of MDM during the rainy Kharif seasons of south Karnataka state (India) ranged between 6.8% (2018) and 19.1% (2022). The research evaluated new fungicidal treatments and assessed the genetic tolerance of maize lines to develop robust management strategies that enhance maize productivity and stability.

Results: During the Kharif seasons of 2021 and 2022, we conducted field trials to evaluate the effectiveness of six different fungicides, both individually and in combination. The most effective approach combined seed treatment with Metalaxyl (4%) and Mancozeb (64%) WP, followed by a foliar spray of Azoxystrobin (18.2%) and Difenoconazole (11.4%) SC. This treatment reduced MDM incidence by 97.6% and increased maize yield up to 85.6 quintals per hectare, with a benefit-cost ratio of 2.2. Additionally, screening of 317 maize inbred lines in Kharif 2019 identified 22 lines with stable MDM resistance over nine consecutive Rabi and Kharif seasons, indicating their potential for sustained resistance. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed significant increases in eighteen phenolic compounds and fifteen flavonoid compounds in resistant maize genotypes. Specifically, resistant genotypes exhibited elevated levels of salicylic acid (4.2 to 9.2-fold), p-Coumaric acid (3.7 to 4.8-fold), o-Coumaric acid (4.5 to 7.4-fold), Caffeic acid (2.4 to 3.1-fold), and Ferulic acid (2.3 to 2.8-fold). Flavonoid levels also increased, with Naringenin ranging from 34.4 µg/g in African Tall to 130 µg/g in MAI 224, Catechin from 22.9 µg/g in African Tall to 124.4 µg/g in MAI 10, and Epicatechin from 1.3 µg/g in African Tall to 8.2 µg/g in MAI 10. These heightened levels contribute to a robust chemical defence mechanism against Peronosclerospora sorghi.

Conclusions: This study provides crucial insights into managing MDM through host plant resistance and fungicidal treatments. We identified 22 resistant inbred lines as valuable genetic resources for breeding MDM-resistant maize hybrids. Enhanced levels of specific phenolic and flavonoid compounds in these resistant genotypes suggest a robust chemical defence mechanism, essential for developing resilient crops. Our findings offer practical recommendations for improving maize production and ensuring crop security in MDM-affected regions. Integrating these resistant maize lines and effective fungicidal treatments can significantly advance sustainable agricultural practices, contributing to crop resilience and food security in areas prone to MDM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信