A key amino acid substitution of vacuolar-type H+-ATPases A subunit (VATP-A) confers selective toxicity of a potential botanical insecticide, periplocoside P (PSP), in Mythimna separata and Spodoptera exigua

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xianxia Zhang , Yayun Zuo , Rui Liu , Shuang Wen , Yakun Pei , Qin Zhao , Baojun Shi , Wenjun Wu , Ding Li , Zhaonong Hu
{"title":"A key amino acid substitution of vacuolar-type H+-ATPases A subunit (VATP-A) confers selective toxicity of a potential botanical insecticide, periplocoside P (PSP), in Mythimna separata and Spodoptera exigua","authors":"Xianxia Zhang ,&nbsp;Yayun Zuo ,&nbsp;Rui Liu ,&nbsp;Shuang Wen ,&nbsp;Yakun Pei ,&nbsp;Qin Zhao ,&nbsp;Baojun Shi ,&nbsp;Wenjun Wu ,&nbsp;Ding Li ,&nbsp;Zhaonong Hu","doi":"10.1016/j.ibmb.2025.104277","DOIUrl":null,"url":null,"abstract":"<div><div>Periplocosides, extracted from the root bark of <em>Periploca sepium</em>, are plant secondary compounds known to inhibit the V-ATPase enzyme in susceptible insect species, such as <em>Mythimna separata</em>. However, many species, including <em>Spodoptera exigua</em>, show resistance to these compounds. Previous studies identified the V-ATPase subunit A (VATP-A) in the midgut epithelium of <em>M. separata</em> as the putative target of periplocoside P (PSP), but the specific amino acids involved in this interaction remained unclear. In this study, we demonstrate the selective toxicity of PSP and its inhibition effect on V-ATPase. Molecular docking identified potential interactions between PSP and three amino acids (K85, R171, E199) in MsVATP-A, with <em>in vitro</em> binding assays revealing that K85 and R171 serve as the primary binding sites. Notably, sequence alignment revealed that R171 in sensitive species is substituted with K in resistant species. To investigate the functional implications of this substitution, we performed <em>in vitro</em> site-directed mutagenesis to exchange the corresponding amino acids between the VATP-A orthologs of <em>M. separata</em> and <em>S. exigua</em>. The R171K mutation in MsVATP-A reduced binding to PSP, while the K170R mutation in SeVATP-A enhanced it. Furthermore, <em>in vivo</em> genome editing in <em>Drosophila melanogaster</em>, a PSP-sensitive species, revealed that the R168K mutation conferred 15.78-fold resistance to PSP compared to the wild-type strain (<em>w</em><sup>1118</sup>). Our findings confirm the role of VATP-A as the target of PSP and elucidate the key amino acids influencing its insecticidal selectivity. This research enhances the understanding of the molecular interactions between natural compounds and insect targets, offering insights for the development of targeted pest control strategies.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"179 ","pages":"Article 104277"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825000219","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Periplocosides, extracted from the root bark of Periploca sepium, are plant secondary compounds known to inhibit the V-ATPase enzyme in susceptible insect species, such as Mythimna separata. However, many species, including Spodoptera exigua, show resistance to these compounds. Previous studies identified the V-ATPase subunit A (VATP-A) in the midgut epithelium of M. separata as the putative target of periplocoside P (PSP), but the specific amino acids involved in this interaction remained unclear. In this study, we demonstrate the selective toxicity of PSP and its inhibition effect on V-ATPase. Molecular docking identified potential interactions between PSP and three amino acids (K85, R171, E199) in MsVATP-A, with in vitro binding assays revealing that K85 and R171 serve as the primary binding sites. Notably, sequence alignment revealed that R171 in sensitive species is substituted with K in resistant species. To investigate the functional implications of this substitution, we performed in vitro site-directed mutagenesis to exchange the corresponding amino acids between the VATP-A orthologs of M. separata and S. exigua. The R171K mutation in MsVATP-A reduced binding to PSP, while the K170R mutation in SeVATP-A enhanced it. Furthermore, in vivo genome editing in Drosophila melanogaster, a PSP-sensitive species, revealed that the R168K mutation conferred 15.78-fold resistance to PSP compared to the wild-type strain (w1118). Our findings confirm the role of VATP-A as the target of PSP and elucidate the key amino acids influencing its insecticidal selectivity. This research enhances the understanding of the molecular interactions between natural compounds and insect targets, offering insights for the development of targeted pest control strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信