Preconcentration-enhanced electrochemical detection of paraoxon in food and environmental samples using reduced graphene oxide-modified disposable sensors.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Rafael L Zamboni, Cristiane Kalinke, Luís M C Ferreira, Maurício A P Papi, Elisa S Orth, Craig E Banks, Luiz H Marcolino-Júnior, Márcio F Bergamini
{"title":"Preconcentration-enhanced electrochemical detection of paraoxon in food and environmental samples using reduced graphene oxide-modified disposable sensors.","authors":"Rafael L Zamboni, Cristiane Kalinke, Luís M C Ferreira, Maurício A P Papi, Elisa S Orth, Craig E Banks, Luiz H Marcolino-Júnior, Márcio F Bergamini","doi":"10.1039/d4ay02240h","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphates, such as paraoxon, are widely used as insecticides in agriculture, making their detection in environmental and food samples crucial due to their high toxicity. This study presents the development of an electrochemical sensor for the detection of paraoxon, using a screen-printed carbon electrode (SPCE) modified with electrochemically reduced graphene oxide (rGO). The modification enhanced the sensor's electrical conductivity and electrochemical performance. A novel preconcentration approach, involving potential pulses at -1.0 and 0.0 V, was employed to improve the adsorption of paraoxon on the electrode surface. Detection was performed by square wave voltammetry, and under optimized conditions, the rGO-SPCE sensor exhibited a linear range from 1.0 to 30 μmol L<sup>-1</sup>, with detection and quantification limits of 0.26 and 0.86 μmol L<sup>-1</sup>, respectively. The sensor demonstrated excellent repeatability (RSD = 4.22%), reproducibility (RSD = 7.14%), and selectivity (RSD < 9.22%). The method was successfully applied to tap water, grape and apple juices, and canned corn water samples, achieving recoveries of approximately 98% at the lowest concentration (1.0 μmol L<sup>-1</sup>) with minimal matrix effects. This approach offers a simple, low-cost, and rapid method for paraoxon detection in water and food samples.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02240h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organophosphates, such as paraoxon, are widely used as insecticides in agriculture, making their detection in environmental and food samples crucial due to their high toxicity. This study presents the development of an electrochemical sensor for the detection of paraoxon, using a screen-printed carbon electrode (SPCE) modified with electrochemically reduced graphene oxide (rGO). The modification enhanced the sensor's electrical conductivity and electrochemical performance. A novel preconcentration approach, involving potential pulses at -1.0 and 0.0 V, was employed to improve the adsorption of paraoxon on the electrode surface. Detection was performed by square wave voltammetry, and under optimized conditions, the rGO-SPCE sensor exhibited a linear range from 1.0 to 30 μmol L-1, with detection and quantification limits of 0.26 and 0.86 μmol L-1, respectively. The sensor demonstrated excellent repeatability (RSD = 4.22%), reproducibility (RSD = 7.14%), and selectivity (RSD < 9.22%). The method was successfully applied to tap water, grape and apple juices, and canned corn water samples, achieving recoveries of approximately 98% at the lowest concentration (1.0 μmol L-1) with minimal matrix effects. This approach offers a simple, low-cost, and rapid method for paraoxon detection in water and food samples.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信