Testing a Heterogeneous Polarizable Continuum Model against Exact Poisson Boundary Conditions.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Paige E Bowling, Montgomery Gray, Suranjan K Paul, John M Herbert
{"title":"Testing a Heterogeneous Polarizable Continuum Model against Exact Poisson Boundary Conditions.","authors":"Paige E Bowling, Montgomery Gray, Suranjan K Paul, John M Herbert","doi":"10.1021/acs.jctc.4c01665","DOIUrl":null,"url":null,"abstract":"<p><p>The polarizable continuum model (PCM) is a computationally efficient way to incorporate dielectric boundary conditions into electronic structure calculations, via a boundary-element reformulation of Poisson's equation. This transformation is only rigorously valid for an isotropic dielectric medium. To simulate anisotropic solvation, as encountered at an interface or when parts of a system are solvent-exposed while other parts are in a nonpolar environment, <i>ad hoc</i> modifications to the PCM formalism have been suggested, in which a dielectric constant is assigned separately to each atomic sphere that contributes to the solute cavity. The accuracy of this \"heterogeneous\" PCM (HetPCM) method is tested here for the first time, by comparison to results from a generalized Poisson equation solver. The latter is a more expensive and cumbersome approach to incorporate arbitrary dielectric boundary conditions, but one that corresponds to a well-defined scalar permittivity function, ε(<b>r</b>). We examine simple model systems for which a function ε(<b>r</b>) can be constructed in a manner that maps reasonably well onto a dielectric constant for each atomic sphere, using a solvent-exposed dielectric constant ε<sub>solv</sub> = 78 and a range of smaller values to represent hydrophobic environments. For nonpolar dielectric constants ε<sub>nonp</sub> ≤ 2, differences between the HetPCM and Poisson solvation energies are large compared to the effect of anisotropy on the solvation energy. For ε<sub>nonp</sub> = 4 and ε<sub>nonp</sub> = 10, however, HetPCM and anisotropic Poisson solvation energies agree to within 2 kcal/mol in most cases. As a realistic use case, we apply the HetPCM method to predict solvation energies and p<i>K</i><sub>a</sub> values for blue copper proteins. The HetPCM method affords p<i>K</i><sub>a</sub> values that are more in line with experimental results as compared to either gas-phase calculations or homogeneous (isotropic) PCM results.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01665","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The polarizable continuum model (PCM) is a computationally efficient way to incorporate dielectric boundary conditions into electronic structure calculations, via a boundary-element reformulation of Poisson's equation. This transformation is only rigorously valid for an isotropic dielectric medium. To simulate anisotropic solvation, as encountered at an interface or when parts of a system are solvent-exposed while other parts are in a nonpolar environment, ad hoc modifications to the PCM formalism have been suggested, in which a dielectric constant is assigned separately to each atomic sphere that contributes to the solute cavity. The accuracy of this "heterogeneous" PCM (HetPCM) method is tested here for the first time, by comparison to results from a generalized Poisson equation solver. The latter is a more expensive and cumbersome approach to incorporate arbitrary dielectric boundary conditions, but one that corresponds to a well-defined scalar permittivity function, ε(r). We examine simple model systems for which a function ε(r) can be constructed in a manner that maps reasonably well onto a dielectric constant for each atomic sphere, using a solvent-exposed dielectric constant εsolv = 78 and a range of smaller values to represent hydrophobic environments. For nonpolar dielectric constants εnonp ≤ 2, differences between the HetPCM and Poisson solvation energies are large compared to the effect of anisotropy on the solvation energy. For εnonp = 4 and εnonp = 10, however, HetPCM and anisotropic Poisson solvation energies agree to within 2 kcal/mol in most cases. As a realistic use case, we apply the HetPCM method to predict solvation energies and pKa values for blue copper proteins. The HetPCM method affords pKa values that are more in line with experimental results as compared to either gas-phase calculations or homogeneous (isotropic) PCM results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信