Integrating Machine Learning and Quantum Circuits for Proton Affinity Predictions.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Hongni Jin, Kenneth M Merz
{"title":"Integrating Machine Learning and Quantum Circuits for Proton Affinity Predictions.","authors":"Hongni Jin, Kenneth M Merz","doi":"10.1021/acs.jctc.4c01609","DOIUrl":null,"url":null,"abstract":"<p><p>A key step in interpreting gas-phase ion mobility coupled with mass spectrometry (IM-MS) data for unknown structure prediction involves identifying the most favorable protonated structure. In the gas phase, the site of protonation is determined using proton affinity (PA) measurements. Currently, mass spectrometry and <i>ab initio</i> computation methods are widely used to evaluate PA; however, both methods are resource-intensive and time-consuming. Therefore, there is a critical need for efficient methods to estimate PA, enabling the rapid identification of the most favorable protonation site in complex organic molecules with multiple proton binding sites. In this work, we developed a fast and accurate method for PA prediction by using multiple descriptors in combination with machine learning (ML) models. Using a comprehensive set of 186 descriptors, our model demonstrated strong predictive performance, with an <i>R</i><sup>2</sup> of 0.96 and a MAE of 2.47 kcal/mol, comparable to experimental uncertainty. Furthermore, we designed quantum circuits as feature encoders for a classical neural network. To evaluate the effectiveness of this hybrid quantum-classical model, we compared its performance with traditional ML models using a reduced feature set derived from the full set. A correlation analysis showed that the quantum-encoded representations have a stronger positive correlation with the target values than the original features do. As a result, the hybrid model outperformed its classical counterpart and achieved consistent performance comparable to traditional ML models with the same reduced feature set on both a noiseless simulator and real quantum hardware, highlighting the potential of quantum machine learning for accurate and efficient PA predictions.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01609","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A key step in interpreting gas-phase ion mobility coupled with mass spectrometry (IM-MS) data for unknown structure prediction involves identifying the most favorable protonated structure. In the gas phase, the site of protonation is determined using proton affinity (PA) measurements. Currently, mass spectrometry and ab initio computation methods are widely used to evaluate PA; however, both methods are resource-intensive and time-consuming. Therefore, there is a critical need for efficient methods to estimate PA, enabling the rapid identification of the most favorable protonation site in complex organic molecules with multiple proton binding sites. In this work, we developed a fast and accurate method for PA prediction by using multiple descriptors in combination with machine learning (ML) models. Using a comprehensive set of 186 descriptors, our model demonstrated strong predictive performance, with an R2 of 0.96 and a MAE of 2.47 kcal/mol, comparable to experimental uncertainty. Furthermore, we designed quantum circuits as feature encoders for a classical neural network. To evaluate the effectiveness of this hybrid quantum-classical model, we compared its performance with traditional ML models using a reduced feature set derived from the full set. A correlation analysis showed that the quantum-encoded representations have a stronger positive correlation with the target values than the original features do. As a result, the hybrid model outperformed its classical counterpart and achieved consistent performance comparable to traditional ML models with the same reduced feature set on both a noiseless simulator and real quantum hardware, highlighting the potential of quantum machine learning for accurate and efficient PA predictions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信