Interfacially Assembled Fluorescent Nanofilm for Ultra-Sensitive Formic Acid Detection via Hydrogen Bonding Affinity and Recognition.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Linxuan Huang, Xinxiang Gao, Xinyao Mao, Ishfaq Ullah, Zhijie Zhou, Ejaz Hussain, Yinghui Xiao, Haonan Peng, Yu Fang
{"title":"Interfacially Assembled Fluorescent Nanofilm for Ultra-Sensitive Formic Acid Detection via Hydrogen Bonding Affinity and Recognition.","authors":"Linxuan Huang, Xinxiang Gao, Xinyao Mao, Ishfaq Ullah, Zhijie Zhou, Ejaz Hussain, Yinghui Xiao, Haonan Peng, Yu Fang","doi":"10.1002/marc.202401048","DOIUrl":null,"url":null,"abstract":"<p><p>High-performance film-based sensors are key innovations driving advancements in sensing technologies. An ultra-sensitive formic acid sensor based on a polymer fluorescent nanofilm synthesized via interfacial assembly using a tetraphenylethylene derivative functionalized with aldehyde and hydroxyl groups is reported. These groups promote imine bond formation and enhance selectivity. The nanofilm, prepared through dynamic condensation with 4,4'-diaminodiphenyl ether at the air-DMSO interface, exhibits excellent luminescence, flexibility, and tunable surface topography. Its bright fluorescence is primarily due to the aggregation-induced emission (AIE) property and hydrogen bonding interactions within the film structure. Imines serve as recognition sites for formic acid, where weak hydrogen bonding alters the electronic environment of the imine groups, blocking proton donors (─OH) and promoting non-radiative decay, leading to selective fluorescence quenching. The sensor achieves an ultra-low detection limit of 550 ppt, a rapid response time of 0.3 s, and excellent reversibility. It also demonstrates high selectivity for formic acid over other VOCs, making it suitable for real-time monitoring. Additionally, the nanofilm's multimodal sensing capabilities, including responses to HCl and NH<sub>3</sub>, highlight its potential for diverse environmental and industrial applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401048"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401048","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance film-based sensors are key innovations driving advancements in sensing technologies. An ultra-sensitive formic acid sensor based on a polymer fluorescent nanofilm synthesized via interfacial assembly using a tetraphenylethylene derivative functionalized with aldehyde and hydroxyl groups is reported. These groups promote imine bond formation and enhance selectivity. The nanofilm, prepared through dynamic condensation with 4,4'-diaminodiphenyl ether at the air-DMSO interface, exhibits excellent luminescence, flexibility, and tunable surface topography. Its bright fluorescence is primarily due to the aggregation-induced emission (AIE) property and hydrogen bonding interactions within the film structure. Imines serve as recognition sites for formic acid, where weak hydrogen bonding alters the electronic environment of the imine groups, blocking proton donors (─OH) and promoting non-radiative decay, leading to selective fluorescence quenching. The sensor achieves an ultra-low detection limit of 550 ppt, a rapid response time of 0.3 s, and excellent reversibility. It also demonstrates high selectivity for formic acid over other VOCs, making it suitable for real-time monitoring. Additionally, the nanofilm's multimodal sensing capabilities, including responses to HCl and NH3, highlight its potential for diverse environmental and industrial applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信