Performance Optimization of Double U-Tube Borehole Heat Exchanger for Thermal Energy Storage

Energy Storage Pub Date : 2025-02-19 DOI:10.1002/est2.70145
Esa Dube Kerme, Alan S. Fung, M. Ziad Saghir
{"title":"Performance Optimization of Double U-Tube Borehole Heat Exchanger for Thermal Energy Storage","authors":"Esa Dube Kerme,&nbsp;Alan S. Fung,&nbsp;M. Ziad Saghir","doi":"10.1002/est2.70145","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an optimization study of the thermal performance of a double U-tube borehole heat exchanger (BHE) with two independent circuits that can be used in borehole thermal energy storage. The study applies the Taguchi method and utility concept to obtain the optimum parameters for two objective functions: maximum heat transfer rate and thermal effectiveness of the BHE. A validated numerical heat transfer model with a fully implicit method is applied to compute the transient heat transfer in the BHE. The Taguchi optimization results revealed that the optimal factors (denoted with letters and numbers showing their levels) for achieving the maximum heat transfer rate and thermal effectiveness are A<sub>1</sub>B<sub>3</sub>C<sub>2</sub>D<sub>1</sub>E<sub>3</sub>F<sub>3</sub>G<sub>3</sub>H<sub>3</sub> and A<sub>3</sub>B<sub>3</sub>C<sub>2</sub>D<sub>3</sub>E<sub>3</sub>F<sub>3</sub>G<sub>1</sub>H<sub>1</sub>, respectively. This resulted in an optimal heat transfer rate of 120 W/m and a thermal effectiveness of 69.3%. Using the utility concept method, a single set of optimal parameters (denoted by their levels as A<sub>3</sub>B<sub>3</sub>C<sub>3</sub>D<sub>2</sub>E<sub>3</sub>F<sub>3</sub>G<sub>2</sub>H<sub>3</sub>) is obtained to maximize the performance of the BHE. These parameters yielded an optimum heat transfer rate of 87.3 W/m and thermal effectiveness of 54.6%. Finally, analysis of variance (ANOVA) showed that ground thermal conductivity, the inlet temperature of the working fluid, and borehole depth are the most influential parameters affecting the performance of the BHE. The study provides crucial information for performance improvement, enhanced energy savings, reduced environmental impact, and optimization of a hybrid ground source heat pump system that can be integrated with borehole thermal energy storage.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70145","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimization study of the thermal performance of a double U-tube borehole heat exchanger (BHE) with two independent circuits that can be used in borehole thermal energy storage. The study applies the Taguchi method and utility concept to obtain the optimum parameters for two objective functions: maximum heat transfer rate and thermal effectiveness of the BHE. A validated numerical heat transfer model with a fully implicit method is applied to compute the transient heat transfer in the BHE. The Taguchi optimization results revealed that the optimal factors (denoted with letters and numbers showing their levels) for achieving the maximum heat transfer rate and thermal effectiveness are A1B3C2D1E3F3G3H3 and A3B3C2D3E3F3G1H1, respectively. This resulted in an optimal heat transfer rate of 120 W/m and a thermal effectiveness of 69.3%. Using the utility concept method, a single set of optimal parameters (denoted by their levels as A3B3C3D2E3F3G2H3) is obtained to maximize the performance of the BHE. These parameters yielded an optimum heat transfer rate of 87.3 W/m and thermal effectiveness of 54.6%. Finally, analysis of variance (ANOVA) showed that ground thermal conductivity, the inlet temperature of the working fluid, and borehole depth are the most influential parameters affecting the performance of the BHE. The study provides crucial information for performance improvement, enhanced energy savings, reduced environmental impact, and optimization of a hybrid ground source heat pump system that can be integrated with borehole thermal energy storage.

Abstract Image

双u型管井内储热换热器性能优化
本文对可用于井下储热的具有两个独立回路的双u型管井下换热器(BHE)的热性能进行了优化研究。本研究采用田口法和效用概念,对BHE的最大传热率和热效率两个目标函数进行了优化。采用一种经过验证的全隐式传热数值模型,对BHE内的瞬态传热进行了计算。田口优化结果表明,获得最大换热率和热效率的最优因子分别为A1B3C2D1E3F3G3H3和A3B3C2D3E3F3G1H1。这导致了120 W/m的最佳传热率和69.3%的热效率。利用效用概念法,得到一组最优参数(分别表示为A3B3C3D2E3F3G2H3),使BHE的性能达到最大。这些参数产生的最佳传热率为87.3 W/m,热效率为54.6%。方差分析结果表明,地面导热系数、工作流体入口温度和钻孔深度是影响BHE性能的主要参数。该研究为提高性能、增强节能、减少环境影响以及优化混合地源热泵系统提供了重要信息,该系统可以与井内热能储存相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信