{"title":"Demographic effects of sanitary policies on European vulture population dynamics: A retrospective modeling approach","authors":"MªÀngels Colomer, Antoni Margalida","doi":"10.1002/eap.3093","DOIUrl":null,"url":null,"abstract":"<p>The prediction of population responses to environmental changes, including the effects of different management scenarios, is a useful tool and a necessary contributor to improving conservation decisions. Empirical datasets based on long-term monitoring studies are essential to assess the robustness of retrospective modeling predictions on biodiversity. These allow checks on the performance of modeling projections and enable improvements to be made to future models, based on the errors detected. Here, we assess the performance of our earlier model to assess the impact of vulture food shortages caused by sanitary regulations on the population dynamics of Spanish vultures during the past decade (2009–2019). This model forecasts the population trends of three vulture species (griffon, Egyptian, and bearded vultures) in Spain (home to 90% of the European vulture population) under various food shortage scenarios. We show that it underestimated bearded and griffon vulture population numbers and overestimated Egyptian vultures. The model suggested that the most plausible food shortage scenario involved an approximate 50% reduction of livestock carcass availability in the ecosystem compared with the previous situation without sanitary carcass removal. However, the observed annual population growth for the period 2009–2019 (7.8% for griffon vulture, 2.4% for Egyptian vulture, and 3.5% for bearded vulture) showed that food shortages had little impact on vulture population dynamics. After assessing the robustness of the model, we developed a new model with updated demographic parameters and foraging movements under different hypothetical food shortage scenarios for the period 2019–2029. This model forecasts annual population increases of about 3.6% for the bearded vulture, 3.7% for the Egyptian vulture, and 1.1% for the Griffon vulture. Our findings suggest that food shortages due to the implementation of sanitary policies resulted in only a moderate impact on vulture population growth, probably thanks to the supplementary feeding network which provided alternative food. Also important was the availability of alternative food sources (intensive farms, landfills) that were used more regularly than expected. We discuss the computational performance of our modeling approach and its management consequences to improve future conservation measures for these threatened species, which provide essential ecosystem services.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.3093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.3093","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of population responses to environmental changes, including the effects of different management scenarios, is a useful tool and a necessary contributor to improving conservation decisions. Empirical datasets based on long-term monitoring studies are essential to assess the robustness of retrospective modeling predictions on biodiversity. These allow checks on the performance of modeling projections and enable improvements to be made to future models, based on the errors detected. Here, we assess the performance of our earlier model to assess the impact of vulture food shortages caused by sanitary regulations on the population dynamics of Spanish vultures during the past decade (2009–2019). This model forecasts the population trends of three vulture species (griffon, Egyptian, and bearded vultures) in Spain (home to 90% of the European vulture population) under various food shortage scenarios. We show that it underestimated bearded and griffon vulture population numbers and overestimated Egyptian vultures. The model suggested that the most plausible food shortage scenario involved an approximate 50% reduction of livestock carcass availability in the ecosystem compared with the previous situation without sanitary carcass removal. However, the observed annual population growth for the period 2009–2019 (7.8% for griffon vulture, 2.4% for Egyptian vulture, and 3.5% for bearded vulture) showed that food shortages had little impact on vulture population dynamics. After assessing the robustness of the model, we developed a new model with updated demographic parameters and foraging movements under different hypothetical food shortage scenarios for the period 2019–2029. This model forecasts annual population increases of about 3.6% for the bearded vulture, 3.7% for the Egyptian vulture, and 1.1% for the Griffon vulture. Our findings suggest that food shortages due to the implementation of sanitary policies resulted in only a moderate impact on vulture population growth, probably thanks to the supplementary feeding network which provided alternative food. Also important was the availability of alternative food sources (intensive farms, landfills) that were used more regularly than expected. We discuss the computational performance of our modeling approach and its management consequences to improve future conservation measures for these threatened species, which provide essential ecosystem services.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.