{"title":"In Vivo Evaluation of Thermally Drawn Biodegradable Optical Fibers as Brain Implants","authors":"Parinaz Abdollahian, Kunyang Sui, Guanghui Li, Jiachen Wang, Cuiling Zhang, Yazhou Wang, Rune W. Berg, Marcello Meneghetti, Christos Markos","doi":"10.1002/jbm.b.35549","DOIUrl":null,"url":null,"abstract":"<p>Optical fiber technology plays a critical role in modern neuroscience towards understanding the complex neuronal dynamics within the nervous system. In this study, we manufactured and characterized amorphous thermally drawn poly D, L-lactic acid (PDLLA) biodegradable optical fibers in different diameters. These optical fibers were then implanted into the lateral posterior region of the mouse brain for four months, allowing us to assess their degradation characteristics. The gradual dissolution of the implanted PDLLA optical fibers in the brain was confirmed by optical, photoacoustic, and scanning electron microscopy (SEM), light propagation characteristics, and molecular weight measurements. The results indicate that the degradation rate of the biodegradable optical fiber was mainly pronounced during the first week. After four months, degradation led to the formation of micropores on the surface of the implanted fiber within the gray matter region of the brain. We believe that the PDLLA biodegradable optical fiber developed in this study constitutes a promising candidate for further functionalization and development of next-generation biocompatible, soft, and biodegradable bi-directional neural interfaces.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optical fiber technology plays a critical role in modern neuroscience towards understanding the complex neuronal dynamics within the nervous system. In this study, we manufactured and characterized amorphous thermally drawn poly D, L-lactic acid (PDLLA) biodegradable optical fibers in different diameters. These optical fibers were then implanted into the lateral posterior region of the mouse brain for four months, allowing us to assess their degradation characteristics. The gradual dissolution of the implanted PDLLA optical fibers in the brain was confirmed by optical, photoacoustic, and scanning electron microscopy (SEM), light propagation characteristics, and molecular weight measurements. The results indicate that the degradation rate of the biodegradable optical fiber was mainly pronounced during the first week. After four months, degradation led to the formation of micropores on the surface of the implanted fiber within the gray matter region of the brain. We believe that the PDLLA biodegradable optical fiber developed in this study constitutes a promising candidate for further functionalization and development of next-generation biocompatible, soft, and biodegradable bi-directional neural interfaces.
光纤技术在现代神经科学中对理解神经系统内复杂的神经元动力学起着至关重要的作用。在本研究中,我们制备并表征了不同直径的非晶态热拉伸聚D, l -乳酸(PDLLA)可生物降解光纤。然后将这些光纤植入小鼠大脑外侧后区四个月,让我们评估它们的降解特性。通过光学、光声、扫描电镜(SEM)、光传播特性和分子量测量证实了植入的PDLLA光纤在大脑中的逐渐溶解。结果表明,生物可降解光纤的降解速率主要在第一周显著。四个月后,降解导致植入纤维在大脑灰质区域的表面形成微孔。我们相信,本研究中开发的PDLLA可生物降解光纤是进一步功能化和开发下一代生物相容性,柔软和可生物降解的双向神经接口的有希望的候选材料。
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.