Yuchen Hou, Buqing Cao, Jianxun Liu, Changyun Li, Min Shi
{"title":"TPST: A Traffic Flow Prediction Model Based on Spatial–Temporal Identity","authors":"Yuchen Hou, Buqing Cao, Jianxun Liu, Changyun Li, Min Shi","doi":"10.1002/cpe.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the constant dynamics of temporal dependence and spatial correlation, the interaction between them has become intricate. Existing work attempts to model precise temporal dependency and spatial correlation to make their interactions more accurate but ignores the importance of understanding how the two interact with each other. Thus, this article mines deeper into their interaction mechanism and proposes a new traffic prediction model called traffic flow prediction model based on spatial–temporal identity (TPST). It provides a new way named the spatial–temporal identity mechanism to model spatial–temporal interactions, which convert complex temporal dependence and spatial correlation into their identity information. Meanwhile, in order to improve spatial–temporal interaction resolution of the model, the method utilizes the down-sampling cross-convolution technique to contain more spatial–temporal history information and parses spatial–temporal interactions at different granularity. Experiments conducted with four real traffic flow datasets show that TPST consistently outperforms the other seven benchmark models, providing higher prediction accuracy with lower computational cost.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
With the constant dynamics of temporal dependence and spatial correlation, the interaction between them has become intricate. Existing work attempts to model precise temporal dependency and spatial correlation to make their interactions more accurate but ignores the importance of understanding how the two interact with each other. Thus, this article mines deeper into their interaction mechanism and proposes a new traffic prediction model called traffic flow prediction model based on spatial–temporal identity (TPST). It provides a new way named the spatial–temporal identity mechanism to model spatial–temporal interactions, which convert complex temporal dependence and spatial correlation into their identity information. Meanwhile, in order to improve spatial–temporal interaction resolution of the model, the method utilizes the down-sampling cross-convolution technique to contain more spatial–temporal history information and parses spatial–temporal interactions at different granularity. Experiments conducted with four real traffic flow datasets show that TPST consistently outperforms the other seven benchmark models, providing higher prediction accuracy with lower computational cost.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.