Unravelling the Tectonic Nature of Charnockites Across the Highland and Wanni Complexes in Northeastern Sri Lanka: Implications for Demarcating Their Uncertain Lithotectonic Boundary

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Geological Journal Pub Date : 2025-01-29 DOI:10.1002/gj.5147
P. L. Dharmapriya, W. M. R. Jayathilake, Lei Zhao, Pahan Abewardana, R. Kleinschrodt, N. D. Subasinghe
{"title":"Unravelling the Tectonic Nature of Charnockites Across the Highland and Wanni Complexes in Northeastern Sri Lanka: Implications for Demarcating Their Uncertain Lithotectonic Boundary","authors":"P. L. Dharmapriya,&nbsp;W. M. R. Jayathilake,&nbsp;Lei Zhao,&nbsp;Pahan Abewardana,&nbsp;R. Kleinschrodt,&nbsp;N. D. Subasinghe","doi":"10.1002/gj.5147","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The tectonic evolution of terranes and microblocks is crucial for understanding the supercontinental cycle. Sri Lanka, centrally located between East and West Gondwana, offers insights into late Neoproterozoic continental tectonics. Ambiguities in defining boundaries between the Highland Complex (HC) and Wanni Complex (WC) of Sri Lanka prompted this study. Utilising whole-rock major and trace element geochemistry, and U–Pb zircon geochronology, we explore charnockites at the inferred HC-WC boundary, revealing their tectonic nature. Charnockites on the WC side (CWCs) display tholeiitic trends, characterised as Fe-rich, metaluminous A2-type granites. Tectonic discrimination diagrams position CWCs in the within-plate granite field. The <sup>238</sup>U/<sup>206</sup>Pb zircon geochronology of three WC-side charnockites gave Late Neoproterozoic metamorphic ages from 576 ± 37 to 561 ± 50 Ma and middle to early Neoproterozoic protolith crystallisation ages from 1011 ± 46 to 690 ± 15 Ma. Hence, protoliths of CWCs suggest some form of extensional tectonics in a continental environment during the early to middle Neoproterozoic that played a major role in the crustal evolution of the northeastern part of the WC. Out of the collected seven charnockites in the HC side (CHCs), three samples shared geochemical signatures resembling the CWCs. The <sup>206</sup>Pb/<sup>238</sup>U zircon ages of one of the samples yielded crystallisation age of ~780 ± 6 Ma and, metamorphic ages from 608 ± 9 to 541 ± 16 Ma, respectively. The rest of the CHCs exhibit calc-alkaline trend, identified as Mg-rich, metaluminous, I-type granites. Tectonic discrimination diagrams reveal volcanic arc signatures, indicating a subduction-related collisional tectonic setting. Geochemical and geochronological findings, coupled with field relations and prior research, lead to the interpretation that charnockites in the northeastern HC-WC boundary possess a distinctive geodynamic history, implying involvement in two distinct tectonic settings. Presently, at the erosion surface, the north-eastern portion of the HC-WC boundary, exhibits a highly diffused nature and manifests as a mixed rock zone.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 2","pages":"484-508"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5147","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tectonic evolution of terranes and microblocks is crucial for understanding the supercontinental cycle. Sri Lanka, centrally located between East and West Gondwana, offers insights into late Neoproterozoic continental tectonics. Ambiguities in defining boundaries between the Highland Complex (HC) and Wanni Complex (WC) of Sri Lanka prompted this study. Utilising whole-rock major and trace element geochemistry, and U–Pb zircon geochronology, we explore charnockites at the inferred HC-WC boundary, revealing their tectonic nature. Charnockites on the WC side (CWCs) display tholeiitic trends, characterised as Fe-rich, metaluminous A2-type granites. Tectonic discrimination diagrams position CWCs in the within-plate granite field. The 238U/206Pb zircon geochronology of three WC-side charnockites gave Late Neoproterozoic metamorphic ages from 576 ± 37 to 561 ± 50 Ma and middle to early Neoproterozoic protolith crystallisation ages from 1011 ± 46 to 690 ± 15 Ma. Hence, protoliths of CWCs suggest some form of extensional tectonics in a continental environment during the early to middle Neoproterozoic that played a major role in the crustal evolution of the northeastern part of the WC. Out of the collected seven charnockites in the HC side (CHCs), three samples shared geochemical signatures resembling the CWCs. The 206Pb/238U zircon ages of one of the samples yielded crystallisation age of ~780 ± 6 Ma and, metamorphic ages from 608 ± 9 to 541 ± 16 Ma, respectively. The rest of the CHCs exhibit calc-alkaline trend, identified as Mg-rich, metaluminous, I-type granites. Tectonic discrimination diagrams reveal volcanic arc signatures, indicating a subduction-related collisional tectonic setting. Geochemical and geochronological findings, coupled with field relations and prior research, lead to the interpretation that charnockites in the northeastern HC-WC boundary possess a distinctive geodynamic history, implying involvement in two distinct tectonic settings. Presently, at the erosion surface, the north-eastern portion of the HC-WC boundary, exhibits a highly diffused nature and manifests as a mixed rock zone.

斯里兰卡东北部高原和万尼杂岩Charnockites的构造性质揭示:对其不确定的岩石构造边界划分的意义
地体和微块体的构造演化对于理解超大陆旋回是至关重要的。斯里兰卡位于东冈瓦纳和西冈瓦纳之间的中心地带,提供了对新元古代晚期大陆构造的见解。界定斯里兰卡高地复合体(HC)和万尼复合体(WC)边界的模糊性促使了这项研究。利用全岩主微量元素地球化学和锆石U-Pb年代学,在推断出的HC-WC界线处对charnock岩进行了勘探,揭示了其构造性质。WC侧Charnockites (CWCs)呈拉斑岩倾向,特征为富铁的a2型成矿花岗岩。构造判别图定位了板内花岗岩场中的cwc。3个wc侧charnocites的238U/206Pb锆石年代学给出了新元古代晚期变质年龄为576±37 ~ 561±50 Ma,新元古代中早期原岩结晶年龄为1011±46 ~ 690±15 Ma。因此,cwc原岩暗示了新元古代早期至中期大陆环境下的某种形式的伸展构造,在西元古代东北部的地壳演化中发挥了重要作用。在HC侧采集的7个charnockites (CHCs)中,有3个样品具有与cwc相似的地球化学特征。其中一个样品的206Pb/238U锆石的结晶年龄为~780±6 Ma,变质年龄为608±9 ~ 541±16 Ma。其余CHCs呈钙碱性倾向,为富镁、成矿、i型花岗岩。构造判别图显示了火山弧特征,显示了与俯冲有关的碰撞构造背景。地球化学和年代学发现,结合野外关系和前人研究,认为HC-WC边界东北部的charnockites具有独特的地球动力学历史,暗示其参与了两个不同的构造背景。目前,在侵蚀面,HC-WC边界的东北部分表现为高度扩散的性质,表现为混合岩带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信