Extracellular Vesicles Derived From Lipopolysaccharide-Challenged Gingival Fibroblast Reveal Distinct miRNA Expression Patterns Associated With Reduced Cancer Survival

IF 1.7 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Daniel Diehl, Charlotte Lauren Brauer, Hagen S. Bachmann, Daniel Pembaur, Patrick Philipp Weil, Anton Friedmann
{"title":"Extracellular Vesicles Derived From Lipopolysaccharide-Challenged Gingival Fibroblast Reveal Distinct miRNA Expression Patterns Associated With Reduced Cancer Survival","authors":"Daniel Diehl,&nbsp;Charlotte Lauren Brauer,&nbsp;Hagen S. Bachmann,&nbsp;Daniel Pembaur,&nbsp;Patrick Philipp Weil,&nbsp;Anton Friedmann","doi":"10.1002/cre2.70099","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Periodontitis is a prevalent inflammatory disease with established systemic implications. Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, potentially linking periodontitis to systemic diseases. However, the molecular cargo of EVs from inflamed periodontal cells remains poorly characterized. This study investigates the EV cargo of human gingival fibroblasts (hGF-hTERT) following lipopolysaccharide (LPS) stimulation and explores their potential role in cancer progression.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>EVs were isolated from LPS-treated and untreated fibroblasts via ultracentrifugation. Dynamic light scattering and scanning electron microscopy characterized EV size and morphology. RNA sequencing identified differentially expressed miRNAs, validated by qPCR. Functional pathway enrichment and in-silico analyses using The Cancer Genome Atlas (TCGA) were performed to assess EV-associated miRNA impact on tumorigenesis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>EV size and concentration remained unchanged after LPS stimulation. However, LPS-derived EVs exhibited a 2.6-fold increase in miRNA content, with three significantly upregulated miRNAs: miR-146a-5p, miR-486-5p, and miR-451a. Functional enrichment analysis revealed their involvement in inflammation, immune modulation, and cancer pathways. In vitro, LPS-derived EVs significantly enhanced prostate cancer (LnCap) cell proliferation. TCGA analysis linked the upregulated miRNAs to poor cancer prognosis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>LPS stimulation alters the miRNA cargo of gingival fibroblast-derived EVs, enhancing pathways associated with inflammation and cancer progression. These findings suggest a mechanistic role for periodontal EVs in systemic disease pathogenesis, warranting further investigation into their diagnostic and therapeutic potential.</p>\n </section>\n </div>","PeriodicalId":10203,"journal":{"name":"Clinical and Experimental Dental Research","volume":"11 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cre2.70099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cre2.70099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

Periodontitis is a prevalent inflammatory disease with established systemic implications. Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, potentially linking periodontitis to systemic diseases. However, the molecular cargo of EVs from inflamed periodontal cells remains poorly characterized. This study investigates the EV cargo of human gingival fibroblasts (hGF-hTERT) following lipopolysaccharide (LPS) stimulation and explores their potential role in cancer progression.

Materials and Methods

EVs were isolated from LPS-treated and untreated fibroblasts via ultracentrifugation. Dynamic light scattering and scanning electron microscopy characterized EV size and morphology. RNA sequencing identified differentially expressed miRNAs, validated by qPCR. Functional pathway enrichment and in-silico analyses using The Cancer Genome Atlas (TCGA) were performed to assess EV-associated miRNA impact on tumorigenesis.

Results

EV size and concentration remained unchanged after LPS stimulation. However, LPS-derived EVs exhibited a 2.6-fold increase in miRNA content, with three significantly upregulated miRNAs: miR-146a-5p, miR-486-5p, and miR-451a. Functional enrichment analysis revealed their involvement in inflammation, immune modulation, and cancer pathways. In vitro, LPS-derived EVs significantly enhanced prostate cancer (LnCap) cell proliferation. TCGA analysis linked the upregulated miRNAs to poor cancer prognosis.

Conclusions

LPS stimulation alters the miRNA cargo of gingival fibroblast-derived EVs, enhancing pathways associated with inflammation and cancer progression. These findings suggest a mechanistic role for periodontal EVs in systemic disease pathogenesis, warranting further investigation into their diagnostic and therapeutic potential.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical and Experimental Dental Research
Clinical and Experimental Dental Research DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.30
自引率
5.60%
发文量
165
审稿时长
26 weeks
期刊介绍: Clinical and Experimental Dental Research aims to provide open access peer-reviewed publications of high scientific quality representing original clinical, diagnostic or experimental work within all disciplines and fields of oral medicine and dentistry. The scope of Clinical and Experimental Dental Research comprises original research material on the anatomy, physiology and pathology of oro-facial, oro-pharyngeal and maxillofacial tissues, and functions and dysfunctions within the stomatognathic system, and the epidemiology, aetiology, prevention, diagnosis, prognosis and therapy of diseases and conditions that have an effect on the homeostasis of the mouth, jaws, and closely associated structures, as well as the healing and regeneration and the clinical aspects of replacement of hard and soft tissues with biomaterials, and the rehabilitation of stomatognathic functions. Studies that bring new knowledge on how to advance health on the individual or public health levels, including interactions between oral and general health and ill-health are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信