The presence of American beech litter can alter the growth response of sugar maple seedlings to drought

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY
Ecosphere Pub Date : 2025-02-18 DOI:10.1002/ecs2.70103
Alexandre Collin, Claudele Ghotsa Mekontchou, Audrey Maheu, Phillipe Nolet, Francesca Sotelo, David Rivest
{"title":"The presence of American beech litter can alter the growth response of sugar maple seedlings to drought","authors":"Alexandre Collin,&nbsp;Claudele Ghotsa Mekontchou,&nbsp;Audrey Maheu,&nbsp;Phillipe Nolet,&nbsp;Francesca Sotelo,&nbsp;David Rivest","doi":"10.1002/ecs2.70103","DOIUrl":null,"url":null,"abstract":"<p>In late successional forests of North America, sugar maple (<i>Acer saccharum</i> Marsh.) and American beech (<i>Fagus grandifolia</i> Ehrh.) form a complex ecosystem with intricate interactions. Over the last few decades, several studies have reported a marked increase in American beech dominance relative to sugar maple. Recent evidence suggests that extreme events such as drought could accelerate sugar maple's maladaptation to climate change and favor American beech in its replacement dynamics. In this study, we conducted a greenhouse experiment to investigate the effects of soil water stress and American beech presence on sugar maple seedling growth, structural physiology, leaf nitrogen, and chlorophyll. The seedlings were subjected to the following treatments independently and in combination for 82 days: soil water stress; soil originating from stands with American beech proliferation; soil sterilization; and presence of American beech litter. The results revealed that soil water stress was the primary factor significantly reducing sugar maple seedling growth, which also resulted in an increased root-to-shoot ratio. The presence of soil from stands with American beech proliferation did not exacerbate this negative effect. Soil sterilization, initially expected to reduce seedling growth by eliminating mycorrhizal associations, actually improved seedling growth. This suggests that adverse biotic processes, such as pathogens, were present in the soils regardless of their origin, and their negative effects outweighed the potential benefits from mycorrhization. The addition of American beech litter mitigated the effects of soil water stress but also introduced allelopathic compounds that hindered seedling growth. Overall, this study highlighted the complex interactions affecting sugar maple seedling growth, emphasizing that drought is a major limiting factor.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70103","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In late successional forests of North America, sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) form a complex ecosystem with intricate interactions. Over the last few decades, several studies have reported a marked increase in American beech dominance relative to sugar maple. Recent evidence suggests that extreme events such as drought could accelerate sugar maple's maladaptation to climate change and favor American beech in its replacement dynamics. In this study, we conducted a greenhouse experiment to investigate the effects of soil water stress and American beech presence on sugar maple seedling growth, structural physiology, leaf nitrogen, and chlorophyll. The seedlings were subjected to the following treatments independently and in combination for 82 days: soil water stress; soil originating from stands with American beech proliferation; soil sterilization; and presence of American beech litter. The results revealed that soil water stress was the primary factor significantly reducing sugar maple seedling growth, which also resulted in an increased root-to-shoot ratio. The presence of soil from stands with American beech proliferation did not exacerbate this negative effect. Soil sterilization, initially expected to reduce seedling growth by eliminating mycorrhizal associations, actually improved seedling growth. This suggests that adverse biotic processes, such as pathogens, were present in the soils regardless of their origin, and their negative effects outweighed the potential benefits from mycorrhization. The addition of American beech litter mitigated the effects of soil water stress but also introduced allelopathic compounds that hindered seedling growth. Overall, this study highlighted the complex interactions affecting sugar maple seedling growth, emphasizing that drought is a major limiting factor.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信